Skip to main content
Log in

On gravity as a medium property in Maxwell equations

  • Research
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The effect of gravity in Maxwell’s equations is often treated as a medium property. The commonly used formulation is based on managing Maxwell’s equations in exactly the same form as in Minkowski spacetime and expressing the effect of gravity as a set of constitutive relations. We show that such a set of Maxwell’s equations is, in fact, a combination of the electric and magnetic fields defined in two different non-covariant ways, both of which fail to identify the associated observer’s four-vectors. The suggested constitutive relations are also ad hoc and unjustified. To an observer with a proper four-vector, the effect of gravity can be arranged as effective polarizations and magnetizations appearing in both the homogeneous and inhomogeneous parts. Modifying the homogeneous part by gravity is inevitable to any observer, and the result cannot be interpreted as the medium property. For optical properties one should directly handle Maxwell’s equations in curved spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eddington, A.S.: Space, Time, and Gravitation, p. 109. Cambridge University Press, London (1920)

    Google Scholar 

  2. Whitehead, A.N.: The Principle of Relativity, Chapter XI. Cambridge University Press, Cambridge (1922)

    Google Scholar 

  3. Weyl, H.: Raum, Zeit, Materie, 5th German Ed. Springer, Berlin, p. 258 (1923)

  4. Gordon, W.: Zur Lichtfortpflanzung nach der Relativitätstheorie. Ann. Phys. (Leipzig) 72, 421 (1923)

    Article  ADS  Google Scholar 

  5. Tamm, I.E.: The electrodynamics of anisotropic media in the special theory of relativity. J. Russ. Phys. Chem. Soc. 56, 248 (1924)

    Google Scholar 

  6. Tamm, I.E.: The crystal-optical theory of relativity, as it relates to the geometry of bi-quadratic forms. J. Russ. Phys. Chem. Soc. 57, 1 (1925)

    Google Scholar 

  7. Møller, C.: The Theory of Relativity, Sections 73 and 115. Clarendon Press, Oxford (1952)

    Google Scholar 

  8. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields, Section 90, 3rd, English Pergmon Press, Oxford (1971)

    Google Scholar 

  9. Plebanski, J.: Electromagnetic waves in gravitational fields. Phys. Rev. 118, 1396 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  10. de Felice, F.: On the gravitational field acting as an optical medium. Gen. Relativ. Gravit. 2, 347 (1971)

    Article  ADS  Google Scholar 

  11. Leonhardt, U., Philbin, T.G.: General relativity in electrical engineering. New J. Phys. 8, 247 (2006)

    Article  ADS  Google Scholar 

  12. Einstein, A.: On the electrodynamics of moving bodies. Translated from Zur Elektrodynamik bewegter Körper, Annalen der Physik 17 (1905); Reprinted in The Principle of Relativity, by H.A. Lorentz, A. Einstein, H. Minkowski and H. Weyl, (Dover, New York, 1952), pp. 35–65

  13. Hwang, J., Noh, H.: Maxwell equations in curved spacetime. Eur. Phys. J. C 83, 969 (2023)

  14. Hwang, J., Noh, H.: Definition of electric and magnetic fields in curved spacetime. Ann. Phys. 454, 169332 (2023)

    Article  MathSciNet  CAS  Google Scholar 

  15. Smarr, L., York, J.W.: Kinematical conditions in the construction of spacetime. Phys. Rev. D 17, 2529 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  16. Wilson, J.R., Mathews, G.J.: Relativistic Numerical Hydrodynamics. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  17. Gourgoulhon, E.: 3+1 Formalism in General Relativity, Bases of Numerical Relativity. Springer, Berlin (2012)

    Book  Google Scholar 

  18. Noh, H., Hwang, J., Bucher, M.: Special relativistic magnetohydrodynamics with gravitation. Astrophys. J. 877, 124 (2019)

    Article  ADS  Google Scholar 

  19. Schneider, P., Ehlers, J., Falco, E.E.: Gravitational Lenses, Section 4.3. Springer Science, Heidelberg (1992)

    Book  Google Scholar 

  20. Petters, A.O., Levine, H., Wambsganss, J.: Singularity Theory and Gravitational Lensing, Section 3.1. Springer Science, Boston (2002)

    Google Scholar 

  21. Meneghetti, M.: Introduction to Gravitational Lensing, Section 2.2. Springer Nature, Cham (2021)

    Book  Google Scholar 

  22. Crater, H.W.: General covariance, Lorentz covariance, the Lorentz force, and the Maxwell equations. Am. J. Phys. 62, 923 (1994); see comment by D.A.T. Vanzella, G.E.A. Matsas and H.W. Crater, ibid. 64, 1075 (1996)

  23. Cooperstock, F.I.: The interaction between electromagnetic and gravitational waves. Ann. Phys. 47, 173 (1968)

    Article  ADS  Google Scholar 

  24. Baroni, L., Fortini, P., Gualdi, C.: On the linearization of Maxwell equations in the field of a weak gravitational wave. Ann. Phys. 162, 49 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  25. Berlin, A., Blas, D., D’Agnolo, R.T., et al.: Detecting high-frequency gravitational waves with microwave cavities. Phys. Rev. D 105, 116011 (2022)

    Article  ADS  CAS  Google Scholar 

  26. Domcke, V., Garcia-Cely, C., Rodd, N.L.: Novel search for high-frequency gravitational waves with low-mass axion haloscopes. Phys. Rev. Lett. 129, 041101 (2022)

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Thorne, K.S., MacDonald, D.: Electrodynamics in curved spacetime: 3+1 formulation. Mon. Not. R. Astron. Soc. 198, 339 (1982)

  28. Gibbons, G.W., Werner, M.C.: The gravitational magnetoelectric effect. Universe 5, 88 (2019)

    Article  ADS  Google Scholar 

  29. Minkowski, H.: Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern, Nachrichten der Kgl. Ges. d. Wiss. zöttingen, Math.-Phys. KI (1907). Reprinted in Math. Ann. 68, 472 (1910)

  30. Einstein, A.: A new formal interpretation of Maxwell’s field equations of electrodynamics. Königlich Preußische Akademie der Wissenschaften (Berlin) (1916) 184, English translation in The Collected Papers of Albert Einstein. vol. 06 The Berlin Years: Writings, 1914–1917, A. Engel, Translator, Princeton University Press, Princeton 1997, p. 132

  31. Born, M., Wolf, E.: Principles of Optics, 7th edn. Cambridge University Press, Cambridge (2019)

    Book  Google Scholar 

  32. Lichnerowicz, A.: Relativistic Hydrodynamics and Magnetohydrodynamics. W.A. Benjamin Inc., New York (1967)

    Google Scholar 

  33. Ellis, G.F.R.: Relativistic cosmology. In: Schatzmann, E. (ed.) Cargese Lectures in Physics. Gordon and Breach, New York (1973)

    Google Scholar 

  34. Hwang, J., Noh, H.: Exact formulations of relativistic electrodynamics and magnetohydrodynamics with helically coupled scalar field. Phys. Rev. D 107, 083020 (2023)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  35. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity, In: Witten, L. (eds)Gravitation: An Introduction to Current Research, p. 227. Wiley, New York (1962). Reprinted in Gen. Relativ. Gravit. 40, 1997 (2008)

Download references

Acknowledgements

We thank Professor Gary Gibbons for clarifying comments. H. N. was supported by the National Research Foundation (NRF) of Korea funded by the Korean Government (Nos. 2018R1A2B6002466 and 2021R1F1A1045515). J. H. was supported by IBS under the Project code, IBS-R018-D1, and by the NRF of Korea funded by the Korean Government (No. NRF-2019R1A2C1003031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyerim Noh.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Covariant formulation

Maxwell’s equations in a medium using the electromagnetic field strength tensors are [29]

$$\begin{aligned} H^{ab}_{\;\;\;;b} = {1 \over c} J^a, \quad \eta ^{abcd} F_{bc,d} = 0, \end{aligned}$$
(A1)

where \(H_{ab}\) is associated with (\(D_a\), \(H_a\)) as \(F_{ab}\) is associated with (\(E_a\), \(B_a\)). Using dual tensors, \(F^*_{ab} \equiv {1 \over 2} \eta _{abcd} F^{cd}\) and similarly for \(H^*_{ab}\), we have

$$\begin{aligned} - {1 \over 2} \eta ^{abcd} H^*_{bc,d} = {1 \over c} J^a, \quad F^{*ab}_{\;\;\;\;\;;b} = 0. \end{aligned}$$
(A2)

Notice the ordinary derivatives appearing in the second of Eq. (A1) and the first of Eq. (A2). We have

$$\begin{aligned} \eta _{0ijk} = - \sqrt{-g} \eta _{ijk}, \quad \eta ^{0ijk} = {1 \over \sqrt{-g}} \eta ^{ijk}, \end{aligned}$$
(A3)

where \(g \equiv \textrm{det}(g_{ij})\) and indices of \(\eta _{ijk}\) are raised and lowered using \(\delta _{ij}\) and its inverse. In this work, we consider a vacuum, thus \(H_{ab} = F_{ab}\).

Using a generic time-like four-vector \(u_a\) of an observer, with \(u_a u^a \equiv -1\), we define the EM fields, \(E_a\) and \(B_a\), associated with the four-vector as [7, 32, 33]

$$\begin{aligned} F_{ab}\equiv & {} u_a E_b - u_b E_a - \eta _{abcd} u^c B^d, \nonumber \\ F^*_{ab}= & {} u_a B_b - u_b B_a + \eta _{abcd} u^c E^d, \end{aligned}$$
(A4)

with \(E_a u^a \equiv 0 \equiv B_a u^a\). The EM fields are

$$\begin{aligned} E_a = F_{ab} u^b, \quad B_a = F_{ab}^* u^b. \end{aligned}$$
(A5)

The current four-vector is decomposed using the same four-vector as

$$\begin{aligned} J^a \equiv \varrho c u^a + j^a, \quad j_a u^a \equiv 0, \end{aligned}$$
(A6)

where \(\varrho \) and \(j_a\) are charge and current densities, respectively, measured by the same observer. The covariant form of Maxwell’s equations in terms of \(E_a\) and \(B_a\) are derived in [33], see also [34]. In other sections we often use tildes to indicate the spacetime covariant quantities.

Appendix B: Two (\(3+1\)) decompositions

We introduce two different decompositions of the spacetime metric. The ADM metric and its inverse are [35]

$$\begin{aligned} g_{00}\equiv & {} - N^2 + N^i N_i, \quad g_{0i} \equiv N_i, \quad g_{ij} \equiv {{\overline{h}}}_{ij}, \nonumber \\ g^{00}= & {} - {1 \over N^2}, \quad g^{0i} = {N^i \over N^2}, \quad g^{ij} = {{\overline{h}}}{}^{ij} - {N^i N^j \over N^2}, \end{aligned}$$
(B1)

where \({{\overline{h}}}{}^{ij}\) is an inverse of the three-space intrinsic metric \({{\overline{h}}}_{ij}\), thus \({{\overline{h}}}{}^{ik} {{\overline{h}}}_{jk} \equiv \delta ^i_j\), and the index of \(N_i\) is raised and lowered by \({{\overline{h}}}_{ij}\) and its inverse. We have

$$\begin{aligned} \eta _{0ijk} = - N {\overline{\eta }}_{ijk}, \quad \eta {}^{0ijk} = {1 \over N} {\overline{\eta }}{}^{ijk}, \end{aligned}$$
(B2)

where indices of \({\overline{\eta }}_{ijk}\) is raised and lowered using \({{\overline{h}}}_{ij}\) and its inverses.

The normal frame is introduced as

$$\begin{aligned} n_i \equiv 0, \quad n_0 = - N, \quad n{}^i = - {N^i \over N}, \quad n{}^0 = {1 \over N}. \end{aligned}$$
(B3)

For the EM fields and current density in the normal frame, we set

$$\begin{aligned} {{\widetilde{B}}}_i \equiv {{\overline{B}}}_i, \quad {{\widetilde{B}}}_0 = {{\overline{B}}}_i N^i, \quad {{\widetilde{B}}}^i = {{\overline{B}}}{}^i, \quad {{\widetilde{B}}}^0 = 0, \end{aligned}$$
(B4)

and similarly for \({{\overline{E}}}_a\), and \({{\overline{j}}}_a\) with \({{\widetilde{E}}}_i \equiv {{\overline{E}}}_i\) etc.; indices of \({{\overline{B}}}_i\) etc. are raised and lowered by \({{\overline{h}}}_{ij}\) and its inverse. Based on the normal frame, Eqs. (A4) and (A6) give

$$\begin{aligned} F_{0i}= & {} - N {{\overline{E}}}_i - {\overline{\eta }}_{ijk} N^j {{\overline{B}}}{}^k, \quad F_{ij} = {\overline{\eta }}_{ijk} {{\overline{B}}}{}^k, \nonumber \\ F{}^*_{0i}= & {} - N {{\overline{B}}}_i + {\overline{\eta }}_{ijk} N^j {{\overline{E}}}{}^k, \quad F{}^*_{ij} = - {\overline{\eta }}_{ijk} {{\overline{E}}}{}^k, \nonumber \\ J^0= & {} \varrho c {1 \over N}, \quad J^i = - \varrho c {N^i \over N} + {{\overline{j}}}^i. \end{aligned}$$
(B5)

By introducing \({{\overline{B}}}_i \equiv B_i\) with the index of \(B_i\) raised and lowered using \(\delta _{ij}\) and its inverse, and similarly for \(E_i\) and \(j_i\), from Eq. (A1) we can derive Eqs. (1)–(4), see also [13].

In [7, 8] an alternative (\(3+1\)) decomposition is used with (in our notation)

$$\begin{aligned} g_{00}\equiv & {} - {{\overline{N}}}{}^2, \quad g_{0i} \equiv {{\overline{N}}}_i, \quad g_{ij} = {\overline{\gamma }}_{ij} - {{{\overline{N}}}_i {{\overline{N}}}_j \over {{\overline{N}}}{}^2}, \nonumber \\ g^{00}= & {} - {1 \over {{\overline{N}}}{}^2} \left( 1 - {{{\overline{N}}}{}^k {{\overline{N}}}_k \over {{\overline{N}}}{}^2} \right) , \quad g^{0i} = {{{\overline{N}}}{}^i \over {{\overline{N}}}{}^2}, \quad g^{ij} \equiv {\overline{\gamma }}{}^{ij}, \end{aligned}$$
(B6)

where the index of \({{\overline{N}}}_i\) is associated with \({\overline{\gamma }}_{ij}\) and its inverse metric \({\overline{\gamma }}^{ij}\); in [8], \({{\overline{N}}}{}^2 \equiv h\) and \({{\overline{N}}}_i \equiv h g_i\). We have

$$\begin{aligned} \eta _{0ijk}= & {} - \sqrt{-g} \eta _{ijk} = - {{\overline{N}}} {\overline{\eta }}_{ijk} = - \sqrt{-g_{00}} {\overline{\eta }}_{ijk}, \nonumber \\ \eta ^{0ijk}= & {} {1 \over \sqrt{-g}} \eta ^{ijk} = {1 \over {{\overline{N}}}} {\overline{\eta }}^{ijk} = {1 \over \sqrt{-g_{00}}} {\overline{\eta }}^{ijk}, \end{aligned}$$
(B7)

where \(\sqrt{-g} = {{\overline{N}}} \sqrt{{\overline{\gamma }}} = N \sqrt{{{\overline{h}}}}\) with \({\overline{\gamma }} \equiv \textrm{det}({\overline{\gamma }}_{ij})\); here, indices of \({\overline{\eta }}_{ijk}\) is associated with \({\overline{\gamma }}_{ij}\) as the metric. Compared with the ADM decomposition, we have

$$\begin{aligned} ds^2= & {} - {{\overline{N}}}{}^2 \left( d x^0 - {{{\overline{N}}}_i \over {{\overline{N}}}{}^2} d x^i \right) \left( d x^0 - {{{\overline{N}}}_j \over {{\overline{N}}}{}^2} d x^j \right) \nonumber \\{} & {} + {\overline{\gamma }}_{ij} d x^i d x^j, \end{aligned}$$
(B8)
$$\begin{aligned} d s^2= & {} - N^2 d x^0 d x^0 \nonumber \\{} & {} + {{\overline{h}}}_{ij} \left( d x^i + N^i d x^0 \right) \left( d x^j + N^j d x^0 \right) . \end{aligned}$$
(B9)

We can express the normal four-vector, the EM fields, field strength tensor and four-current in the normal frame using this decomposition. But these are more complicated compared with Eqs. (B3)–(B5) for the ADM decomposition. For example, we have

$$\begin{aligned} n_i\equiv & {} 0, \quad n_0 = - {{{\overline{N}}}^2 \over \sqrt{ {{\overline{N}}}^2 - {{\overline{N}}}^k {{\overline{N}}}_k}}, \nonumber \\ n{}^i= & {} - {{{\overline{N}}}^i \over \sqrt{ {{\overline{N}}}^2 - {{\overline{N}}}^k {{\overline{N}}}_k}}, \quad n{}^0 = {\sqrt{ {{\overline{N}}}^2 - {{\overline{N}}}^k {{\overline{N}}}_k} \over {{\overline{N}}}^2}. \end{aligned}$$
(B10)

This decomposition is more adapted to the coordinate frame with

$$\begin{aligned} {{\bar{n}}}_i = {{{\overline{N}}}_i \over {{\overline{N}}}}, \quad {{\bar{n}}}_0 = - {{\overline{N}}}, \quad {{\bar{n}}}{}^i \equiv 0, \quad {{\bar{n}}}{}^0 = {1 \over {{\overline{N}}}}, \end{aligned}$$
(B11)

etc., but Maxwell’s equations are still more complicated compared with the compact forms available in the normal frame in the ADM decomposition, see Eqs. (20)–(23) in [13].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, Jc., Noh, H. On gravity as a medium property in Maxwell equations. Gen Relativ Gravit 56, 8 (2024). https://doi.org/10.1007/s10714-023-03194-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-023-03194-5

Navigation