Skip to main content
Log in

Isolated and combined effects of cobalt and nickel on the microalga Raphidocelis subcapitata

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities. To the best of our knowledge, there are no studies that investigated the combined effects of these metals on a freshwater Chlorophyceae. Therefore, this study analyzed the isolated and combined effects of Co and Ni in cell density, physiological and morphological parameters, reactive oxygen species (ROS), carbohydrates and photosynthetic parameters of the microalga Raphidocelis subcapitata. Data showed that Co affected the cell density from 0.25 mg Co L−1; the fluorescence of chlorophyll a (Chl a) (0.10 mg Co L−1); ROS production (0.50 mg Co L−1), total carbohydrates and efficiency of the oxygen evolving complex (OEC) at all tested concentrations; and the maximum quantum yield (ΦM) from 0.50 mg Co L−1. Ni exposure decreased ROS and cell density (0.35 mg Ni L−1); altered Chl a fluorescence and carbohydrates at all tested concentrations; and did not alter photosynthetic parameters. Regarding the Co-Ni mixtures, our data best fitted the concentration addition (CA) model and dose-ratio dependent (DR) deviation in which synergism was observed at low doses of Co and high doses of Ni and antagonism occurred at high doses of Co and low doses of Ni. The combined metals affected ROS production, carbohydrates, ΦM, OEC and morphological and physiological parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Afkar E, Ababna H, Fathi AA (2010) Toxicological response of the green alga Chlorella vulgaris, to some heavy metals. Am J Environ Sci 6(3):230

    Article  CAS  Google Scholar 

  • Chlorella vulgaris, to some heavy metals. Am J Environ Sci 6(3):230

  • Aguilera A, Amils R (2005) Tolerance to cadmium in Chlamydomonas sp.(Chlorophyta) strains isolated from an extreme acidic environment, the Tinto River (SW, Spain). Aqua Toxicol 75:316–329

    Article  CAS  Google Scholar 

  • Alho LOG, Gebara RC, Mansano AS, Rocha GS, Melão MGG (2022) Individual and Combined Effects of Manganese and Chromium on a Freshwater Chlorophyceae. Environ Toxicol Chem 41:1004–1015

    Article  CAS  Google Scholar 

  • Alho LOG, Gebara RC, Paina KA, Sarmento H, Melão MGG (2019) Responses of Raphidocelis subcapitata exposed to Cd and Pb: Mechanisms of toxicity assessed by multiple endpoints. Ecotoxicol Environ Saf 169:950–959

    Article  CAS  Google Scholar 

  • Alloatti A, Tripodi KEJ, Uttaro AD (2013) Synergistic effect of inhibitors of fatty acid desaturases on Trypanosoma parasites. Parasitol Res 112:3289–3294

    Article  Google Scholar 

  • Alsop D, Lall SP, Wood CM (2014) Reproductive impacts and physiological adaptations of zebrafish to elevated dietary nickel. Comparative Biochem Physiol Part C: Toxicol Pharmacol 165:67–75

    CAS  Google Scholar 

  • Alves ACF, Saiki P, Brito RS, Scalize PS, Rocha TL (2022) How much are metals for next-generation clean technologies harmful to aquatic animal health? A study with cobalt and nickel effects in zebrafish (Danio rerio). J Hazardous Mater Adv 8:100160

    Article  CAS  Google Scholar 

  • Aziz NA, Salih SM, Nizar Y (2012) Pollution of Tanjero River by Some Heavy Metals Generated from Sewage Wastwater and Industrial Wastewater in Sulaimani District. Kirkuk University J Sci Stud 7:67–84

    Article  Google Scholar 

  • Barabasz W, Hetmańska B, Tomasik P (1990) The metal—metal interactions in biological systems. Part I. Escherichlia coli. Water, Air, Soil Poll 52:337–357

    Article  CAS  Google Scholar 

  • Batool U, Javed M (2015) Synergistic effects of metals (cobalt, chromium and lead) in binary and tertiary mixture forms on Catla catla, Cirrhina mrigala and Labeo rohita. Pakistan J Zool 47:617–623

    CAS  Google Scholar 

  • Baumann HA, Morrisson L, Stengel DB (2009) Metal accumulation and toxicity measured by PAM—chlorophyll fluorescence in seven species of marine macroalgae. Ecotoxicol Environ Safety 72:1063–1075

    Article  CAS  Google Scholar 

  • Begović L, Mlinarić S, Dunić JA, Katanić Z, Lončarić Z, Lepeduš H, Cesar V (2016) Response of Lemna minor L. to short-term cobalt exposure: The effect on photosynthetic electron transport chain and induction of oxidative damage. Aqua Toxicol 175:117–126

    Article  Google Scholar 

  • Beyer J, Peterson K, Song Y, Ruus A, Grung M, Bakke T, Tollefsen KE (2014) Environmental risk assessment of combined effects in aquatic ecotoxicology: A discussion paper. Marine Environ Res 96:81–91

    Article  CAS  Google Scholar 

  • Blust R (2011) Cobalt. Fish Physiol 31:291–326

    Article  Google Scholar 

  • Brix V K, Schlekat CE, Garman ER (2017) The mechanisms of nickel toxicity in aquatic environments: An adverse outcome pathway analysis. Environ Toxicol Chem 36:1128–1137

    Article  CAS  Google Scholar 

  • Cassee FR, Groten JP, van Bladeren PJ, Feron VJ (1998) Toxicological evaluation and risk assessment of chemical mixtures. Crit Rev Toxicol 28:73–101

    Article  CAS  Google Scholar 

  • Cedergreen N (2014) Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PloS one 9:e96580

    Article  Google Scholar 

  • Chia MA, Lombardi AT, Melão MGG, Parrish CC (2015) Combined nitrogen limitation and cadmium stress stimulate total carbohydrates, lipids, protein and amino acid accumulation in Chlorella vulgaris (Trebouxiophyceae). Aqua Toxicol 160:87–95

    Article  CAS  Google Scholar 

  • Chu SP (1942) The influence of the mineral composition of the medium on the growth of planktonic algae: Part I. Methods and culture media. J Ecol 30:284. https://doi.org/10.2307/2256574

    Article  CAS  Google Scholar 

  • Čypaitė A, Žaltauskaitė J, Venclovienė J (2014) Assessment of chlorophyll-a, chlorophyll-b and growth rate in freshwater green algae Pseudokirchneriella subcapitata exposed to cadmium and copper. In: 9th international conference environmental engineering (9th ICEE)—selected papers

  • Deleebeeck NM, De Laender F, Chepurnov VA, Vyverman W, Janssen CR, De Schamphelaere KA (2009) A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water Res 43(7):1935–1947

    Article  CAS  Google Scholar 

  • de Carvalho M, Ribeiro KD, Moreira RM, Almeida AM (2017) Concentration of metals in the Doce river in Mariana, Minas Gerais, Brazil. Acta Brasiliensis 1:37–41

    Article  Google Scholar 

  • Dizge N, Keskinler B, Barlas H (2009) Sorption of Ni (II) ions from aqueous solution by Lewatit cation-exchange resin. J Hazardous Mater 167:915–926

    Article  CAS  Google Scholar 

  • Dos Reis LL, Alho LDOG, de Abreu CB, Gebara RC, da Silva Mansano A, Melão MDGG (2022) Effects of cadmium and cobalt mixtures on growth and photosynthesis of Raphidocelis subcapitata (Chlorophyceae). Aquatic Toxicology 244:106077

  • Dourado PLR, Rocha MP, Roveda LM, Junior JLR, Cândido LS, Cardoso CAL, Morales MAM, Oliveira KMP, Grisolia AB (2017) Genotoxic and mutagenic effects of polluted surface water in the midwestern region of Brazil using animal and plant bioassays. Genet Mol Biol 40:123–133

    Article  CAS  Google Scholar 

  • Echeveste P, Silva JC, Lombardi AT (2017) Cu and Cd affect distinctly the physiology of a cosmopolitan tropical freshwater phytoplankton. Ecotoxicol Environ Safety 143:228–235

    Article  CAS  Google Scholar 

  • El-Sheekh M, El-Naggar A, Osman MEH, El-Mazaly E (2003) Effect of cobalt on growth, pigments and the photosynthetic electron transport in Monoraphidium minutum and Nitzchia perminuta. Brazilian J Plant Physiol 15:159–166

    Article  CAS  Google Scholar 

  • Elsalhin HE, Abobaker HM, Ali MS (2016) Toxicity effect of Cobalt on total protein and carbohydrate of cyanobacteria Spirulina platensis. IOSR J Environ Sci, Toxicol Food Technol 10:114–120

    Article  CAS  Google Scholar 

  • Fawzy MA, Hifney AF, Adam MS, Al-Badaani AA (2020) Biosorption of cobalt and its effect on growth and metabolites of Synechocystis pevalekii and Scenedesmus bernardii: Isothermal analysis. Environ Technol Innovation 19:100953

    Article  Google Scholar 

  • Filová A, Fargašová A, Molnárová M (2021) Cu, Ni, and Zn effects on basic physiological and stress parameters of Raphidocelis subcapitata algae. Environ Sci Poll Res 28:58426–58441

    Article  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP (2001) Development of flow cytometry‐based algal bioassays for assessing toxicity of copper in natural waters. Environ Toxicol Chem: Int J 20:160–170

    CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem: Int J 21:2412–2422

    Article  CAS  Google Scholar 

  • Franqueira D, Orosa M, Torres E, Herrero E, Cid A (2000) Potential use of flow cytometry in toxicity studies with microalgae. Sci Total Environ 247:119–126

    Article  CAS  Google Scholar 

  • García-García J, Peña-Sanabria KA, Sánchez-Thomas R, Moreno-Sánchez R (2018) Nickel accumulation by the green algae-like Euglena gracilis. J Hazard Mater 343:10–18

    Article  Google Scholar 

  • Gebara RC, Alho LOG, Rocha GS, Mansano AS, Melão MGG (2020) Zinc and aluminum mixtures have synergic effects to the algae Raphidocelis subcapitata at environmental concentrations. Chemosphere 242:125231

    Article  CAS  Google Scholar 

  • Gebara RC, Alho LOG, Mansano ADS, Rocha GS, Melao M (2023) Single and combined effects of Zn and Al on photosystem II of the green microalgae Raphidocelis subcapitata assessed by pulse-amplitude modulated (PAM) fluorometry. Aqua Toxicol 254:106369

    Article  CAS  Google Scholar 

  • Genty B, Briantais J, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA)-General Subjects 990:87–92

    Article  CAS  Google Scholar 

  • Ghafari M, Rashidi B, Haznedaroglu BZ (2018) Effects of macro and micronutrients on neutral lipid accumulation in oleaginous microalgae. Biofuels 9:147–156

    Article  CAS  Google Scholar 

  • Golding LA, Angel BM, Batley GE, Apte SC, Krassoi R, Doyle CJ (2015) Derivation of a water quality guideline for aluminium in marine waters. Environmental Toxicology and Chemistry 34(1):141–151. https://doi.org/10.1002/etc.2771

  • Guo J, Peng J, Lei Y, Kanerva M, Li Q, Song J, Guo J, Sun H (2020) Comparison of oxidative stress induced by clarithromycin in two freshwater microalgae Raphidocelis subcapitata and Chlorella vulgaris. Aqua Toxicol 219:105376

    Article  CAS  Google Scholar 

  • Haiduc AG, Brandenberger M, Suquet S, Vogel F, Bernier-Latmani R, Ludwig C (2009) SunCHem: an integrated process for the hydrothermal production of methane from microalgae and CO2 mitigation. J Appl Phycol 21:529–541

    Article  CAS  Google Scholar 

  • He E, Baas J, van Gestel CAM (2015) Interaction between nickel and cobalt toxicity in Enchytraeus crypticus is due to competitive uptake. Environ Toxicol Chem 34:328–337

    Article  CAS  Google Scholar 

  • Herlory O, Bonzom J, Gilbin R (2013) Sensitivity evaluation of the green alga Chlamydomonas reinhardtii to uranium by pulse amplitude modulated (PAM) fluorometry. Aqua Toxicol 140:288–294

    Article  Google Scholar 

  • Hong Y, Hu H, Xie X, Sakoda A, Sagehashi M, Li F (2009) Gramine-induced growth inhibition, oxidative damage and antioxidant responses in freshwater cyanobacterium Microcystis aeruginosa. Aqua Toxicol 91:262–269

    Article  CAS  Google Scholar 

  • Jonker MJ, Svendsen C, Bedaux JJM, Bongers M, Kammenga JE (2005) Significance testing of synergistic/antagonistic, dose level‐dependent, or dose ratio‐dependent effects in mixture dose‐response analysis. Environ Toxicol Chem: An Int J 24:2701–2713

    Article  CAS  Google Scholar 

  • Juarez AB, Barsanti L, Passarelli V, Evangelista V, Vesentini N, Conforti V, Gualtieri P (2008) In vivo microspectroscopy monitoring of chromium effects on the photosynthetic and photoreceptive apparatus of Eudorina unicocca and Chlorella kessleri. J Environ Monitoring 10:1313–1318

    Article  CAS  Google Scholar 

  • Juneau P, El Berdey A, Popovic R (2002) PAM fluorometry in the determination of the sensitivity of Chlorella vulgaris, Selenastrum capricornutum, and Chlamydomonas reinhardtii to copper. Arch Environ Cont Toxicol 42:155–164

    Article  CAS  Google Scholar 

  • Kriedemann PE, Graham RD, Wiskich JT (1985) Photosynthetic dysfunction and in vivo changes in chlorophyll a fluorescence from manganese-deficient wheat leaves. Australian J Agri Res 36:157–169

    Article  CAS  Google Scholar 

  • Kumar V, Parihar RD, Sharma A, Bakshi P, Sidhu GPS, Bali AS, Karaouzas I, Bhardwaj R, Thukral AK, Gyasi-Agyei Y, Rodrigo-Comino J (2019) Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 236:124364

    Article  CAS  Google Scholar 

  • Liu D, Wong PTS, Dutka BJ (1973) Determination of carbohydrate in lake sediment by a modified phenol-sulfuric acid method. Water Res 7:741–746

    Article  CAS  Google Scholar 

  • Liu Y, Vijver MG, Pan B, Peijnenburg WJGM (2017) Toxicity models of metal mixtures established on the basis of “additivity” and “interactions”. Front Environ Sci Eng 11:1–13

    Article  Google Scholar 

  • Lustigman B, Lee LH, Weiss-Magasic C (1995) Effects of cobalt and pH on the growth of Chlamydomonas reinhardtii. Bull Environ Contamination Toxicol 55:65–72

    Article  CAS  Google Scholar 

  • Machado MD, Lopes AR, Soares V E (2015) Responses of the alga Pseudokirchneriella subcapitata to long-term exposure to metal stress. J Hazard Mater 296:82–92

    Article  CAS  Google Scholar 

  • Machado MD, Soares V E (2014) Modification of cell volume and proliferative capacity of Pseudokirchneriella subcapitata cells exposed to metal stress. Aqua Toxicol 147:1–6

    Article  CAS  Google Scholar 

  • Mahey S, Kumar R, Sharma M, Kumar V, Bhardwaj R (2020) A critical review on toxicity of cobalt and its bioremediation strategies. SN Appl Sci 2:1–12

    Article  Google Scholar 

  • Maleva M, Nekrasova G, Borisova G, Chukina N, Ushakova O (2012) Effect of heavy metals on photosynthetic apparatus and antioxidant status of Elodea. Russian J Plant Physiol 59:190–197

    Article  CAS  Google Scholar 

  • Mallick N, Mohn F (2003) Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus. Ecotoxicol Environ Safety 55:64–69

    Article  CAS  Google Scholar 

  • Mansano AS, Moreira RA, Dornfeld HC, Freitas EC, Vieira EM, Sarmento H, Rocha O, Seleghim MHR (2017) Effects of diuron and carbofuran and their mixtures on the microalgae Raphidocelis subcapitata. Ecotoxicol Environ Safety 142:312–321

    Article  CAS  Google Scholar 

  • Martínez-Ruiz EB, Martínez-Jerónimo F (2015) Nickel has biochemical, physiological, and structural effects on the green microalga Ankistrodesmus falcatus: an integrative study. Aqua Toxicol 169:27–36

    Article  Google Scholar 

  • Mei LI, Qin ZHU, Hu CW, Li CHEN, Liu ZL, Kong ZM (2007) Cobalt and manganese stress in the microalga Pavlova viridis (Prymnesiophyceae): effects on lipid peroxidation and antioxidant enzymes. J Environ Sci 19(11):1330–1335

    Article  Google Scholar 

  • Miazek K, Iwanek W, Remacle C, Richel A, Goffin D (2015) Effect of metals, metalloids and metallic nanoparticles on microalgae growth and industrial product biosynthesis: a review. Int J Mol Sci 16(10):23929–23969

    Article  CAS  Google Scholar 

  • Moreira RA, Rocha GS, Silva LCM, Goulart VB, Montagner CC, Melão MGG, Espindola ELG (2020) Exposure to environmental concentrations of fipronil and 2, 4-D mixtures causes physiological, morphological and biochemical changes in Raphidocelis subcapitata. Ecotoxicol Environ Safety 206:111180

    Article  CAS  Google Scholar 

  • Napan K, Teng L, Quinn JC, Wood BD (2015) Impact of heavy metals from flue gas integration with microalgae production. Algal Res 8:83–88

    Article  Google Scholar 

  • Nishikawa K, Tominaga N (2001) Isolation, growth, ultrastructure, and metal tolerance of the green alga, Chlamydomonas acidophila (Chlorophyta). Biosci, biotechnol, biochem 65(12):2650–2656

    Article  CAS  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    Article  CAS  Google Scholar 

  • Novak S, Drobne D, Golobič M, Zupanc J, Romih T, Gianoncelli A, Kiskinova M, Kaulich B, Pelicon P, Vavpetič P, Jeromel L, Ogrinc N, Makovec D (2013) Cellular internalization of dissolved cobalt ions from ingested CoFe2O4 nanoparticles: in vivo experimental evidence. Environ Sci Technol 47:5400–5408

    Article  CAS  Google Scholar 

  • Nweke CO, Ueh SI, Ohale VK (2018) Toxicity of four metals and their mixtures to Pseudomonas fluorescens: An assessment using fixed ratio ray design. Ecotoxicol Environ Contamination 13:1–14

    Article  Google Scholar 

  • OECD - Organisation for Economic Co-operation and Development, 2002. OECD Guidelines for the Testing of Chemicals. Freshwater Alga and Cyanobacteria. Growth Inhibition Test, 21 pp.

  • Osman ME, El-Naggar AH, El-Sheekh MM, El-Mazally EE (2004) Differential effects of Co2+ and Ni2+ on protein metabolism in Scenedesmus obliquus and Nitzschia perminuta. Environ Toxicol Pharmacol 16:169–178

    Article  CAS  Google Scholar 

  • Peters A, Merrington G, Schlekat C, De Schamphelaere K, Stauber J, Batley G, Krassoi R (2018) Validation of the nickel biotic ligand model for locally relevant species in Australian freshwaters. Environ Toxicol Chem 37(10):2566–2574

    Article  CAS  Google Scholar 

  • Petsas AS, Vagi MC (2017) Effects on the photosynthetic activity of algae after exposure to various organic and inorganic pollutants. Chlorophyll 37

  • Pinto E, Sigaud-kutner TCS, Leitão MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal–induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Plekhanov S, Chemeris YK (2003) Early Toxic Effects of Zinc, Cobalt, and Cadmium on Photosynthetic Activity of the Green Alga Chlorella pyrenoidosa Chick S-39. Biol Bull the Russian Acad Sci 30:506–511

    Article  CAS  Google Scholar 

  • Polechońska L, Samecka-Cymerman A (2018) Cobalt and nickel content in Hydrocharis morsus-ranae and their bioremoval from single-and binary solutions. Environ Sci Poll Res 25:32044–32052

    Article  Google Scholar 

  • Posthuma L, Traas TP, Suter GW (2002) General introduction to species sensitivity distributions. Species sensitivity distributions in ecotoxicology 3–10.

  • Pourkhabbaz A, Khazaei T, Behravesh S, Ebrahimpour M, Pourkhabbaz H (2011) Effect of water hardness on the toxicity of cobalt and nickel to a freshwater fish, Capoeta fusca. Biomed Environ Sci 24:656–660

    CAS  Google Scholar 

  • Reinardy HC, Syrett JR, Jeffree RA, Henry TB, Jha AN (2013) Cobalt-induced genotoxicity in male zebrafish (Danio rerio), with implications for reproduction and expression of DNA repair genes. Aqua Toxicol 126:224–230

    Article  CAS  Google Scholar 

  • Rocha GS, Parrish CC, Lombardi AT, Melão MGG (2018) Biochemical and physiological responses of Selenastrum gracile (Chlorophyceae) acclimated to different phosphorus concentrations. J Applied Phycol 30:2167–2177

    Article  CAS  Google Scholar 

  • Rocha, GS, & Melão, MGG (2023). Does cobalt antagonize P limitation effects on photosynthetic parameters on the freshwater microalgae Raphidocelis subcapitata (Chlorophyceae), or does P limitation acclimation antagonize cobalt effects? More questions than answers. Environmental Pollution, 122998

  • Sarmento H, Unrein F, Isumbisho M, Stenuite S, Gasol JM, Descy J (2008) Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa. Freshwater Biol 53:756–771

    Article  Google Scholar 

  • Sharma RM, Panigrahi S, Azeez PA (1987) Effect of cobalt on the primary productivity of Spirulina platensis. Bull Environ Contamination Toxicol 39:716–720

    Article  CAS  Google Scholar 

  • Sharma KK, Schuhmann H, Schenk PM (2012) High Lipid Induction in Microalgae for Biodiesel Production. Energies 5:1532–1553

    Article  CAS  Google Scholar 

  • Shukla MK, Tripathi RD, Sharma N, Dwivedi S, Mishra S, Singh R, Shukla OP, Rai UN (2009) Responses of cyanobacterium Anabaena doliolum during nickel stress. J Environmental Biology 30(5):871

    CAS  Google Scholar 

  • Sreekanth TVM, Nagajyothi PC, Lee KD, Prasad TNVKV (2013) Occurrence, physiological responses and toxicity of nickel in plants. Int J Environ Sci Technol 10:1129–1140

    Article  CAS  Google Scholar 

  • Sridhar A, Khader PA, Thirumurugan R (2020) Assessment of cobalt accumulation effect on growth and antioxidant responses in aquatic macrophyte Hydrilla verticillata (Lf) Royle. Biologia 75:2001–2008

    Article  CAS  Google Scholar 

  • Starodub ME, Wong PTS, Mayfield CI (1987) Short term and long term studies on individual and combined toxicities of copper, zinc and lead to Scenedesmus quadricauda. Sci Total Environ 63:101–110

    Article  CAS  Google Scholar 

  • Stubblefield WA, Genderen EV, Cardwell AS, Heijerick DG, Janssen CR, Schamphelaere KAC (2020) Acute and chronic toxicity of cobalt to freshwater organisms: using a species sensitivity distribution approach to establish international water quality standards. Environ Toxicol Chem 39:799–811

    Article  CAS  Google Scholar 

  • Szivák I, Behra R, Sigg L (2009) Metal‐induced reactive oxygen species production in Chlamydomonas reinhardtii (chlorophyceae) 1. J Phycol 45:427–435

    Article  Google Scholar 

  • Thompson F, Oliveira BC, Cordeiro MC, Masi BP, Rangel TP, Paz P, Freitas T, Lopes G, Silva BS, Cabral AS, Soares M, Lacerda D, Vergilio CS, Lopes-Ferreira M, Lima C, Thompson C, Rezende CE (2020) Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Sci Total Environ 705:135914

    Article  CAS  Google Scholar 

  • USEPA (2009) Drinking Water Standards and Health Advisories. EPA 822-R-09-011. Office 666 of Water. Washington, DC, USA

  • Vijver MG, Elliott EG, Peijnenburg WJ, De Snoo GR (2011) Response predictions for organisms water‐exposed to metal mixtures: A meta‐analysis. Environ Toxicol Chem 30(6):1482–1487

    Article  CAS  Google Scholar 

  • Wang Z, Yeung KWY, Zhou G, Yung MMN, Schlekat CE, Garman ER, Gissi F, Stauber JL, Middleton ET, Wang YYL, Leung KMY (2020) Acute and chronic toxicity of nickel on freshwater and marine tropical aquatic organisms. Ecotoxicol Environ Safety 206:111373

    Article  CAS  Google Scholar 

  • WHO (2017) Guidelines for Drinking-water Quality, fourth ed. incorporating the first 697 addendum. Geneva

  • Yong W-K, Sim K, Poong S, Wei D, Phang S, Lim P (2019) Physiological and metabolic responses of Scenedesmus quadricauda (Chlorophyceae) to nickel toxicity and warming. 3 Biotech 9:1–11

    Article  CAS  Google Scholar 

  • Yucel DS, Balci N, Baba A (2016) Generation of acid mine lakes associated with abandoned coal mines in Northwest Turkey. Arch Environ Contamination Toxicol 70:757–782

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded in part by the São Paulo Research Foundation - FAPESP (2013/07296-2, 2018/07988-5), Financiadora de Estudos e Projetos - FINEP, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico - CNPq (Process no. 141086/2019-0 and 316064/2021-1), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (finance code 001, Process no. 88887.364036/2019-00). R.C.G. and C.B.A. have a post-doctoral grant from the São Paulo Research Foundation - FAPESP (2021/13583-0 and 2021/13607-7). We would also like to thank Dr. Hugo Sarmento and Dr. Ana Teresa Lombardi for the permission to use their laboratories, as well as the equipment.

Author contributions

LLdosR: Conceptualization, Methodology, Validation, Formal analysis, Investigation, Writing – Original Draft. CBdeA: Methodology, Validation, Investigation, Writing - Review & Editing. RCG: Validation, Formal analysis, Writing - Review & Editing. GSR: Methodology, Validation, Investigation, Writing - Review & Editing. EL: Resources and Funding acquisition, Writing - Review & Editing. AdaSM: Validation, Formal analysis, Writing - Review & Editing. MdaGGM: Conceptualization, Resources, Writing - Review & Editing, Funding acquisition.

Funding

This work was funded in part by the São Paulo Research Foundation - FAPESP (2013/07296-2, 2018/07988-5), Financiadora de Estudos e Projetos - FINEP, Conselho Nacional de Desenvolvimento Cientifico e Tecnológico - CNPq (Process no. 141086/2019-0 and 316064/2021-1), and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES (finance code 001, Process no. 88887.364036/2019-00). R.C.G. and C.B.A. have a post-doctoral grant from the São Paulo Research Foundation - FAPESP (2021/13583-0 and 2021/13607-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa Luiza dos Reis.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Reis, L.L., de Abreu, C.B., Gebara, R.C. et al. Isolated and combined effects of cobalt and nickel on the microalga Raphidocelis subcapitata. Ecotoxicology 33, 104–118 (2024). https://doi.org/10.1007/s10646-024-02728-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-024-02728-0

Keywords

Navigation