Skip to main content
Log in

Forming free bipolar resistive switching in SiOx-based flexible MIM devices

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

SiOx-based resistive switching (RS) cells composed of Cu as the active electrode were fabricated on flexible muscovite mica flakes using DC and radio frequency magnetron sputtering techniques. In one set of the metal–insulator–metal (MIM) devices, Cu-nanoparticles (Cu-NPs) have been embedded into the SiOx layer and their RS properties have been compared with the devices without the Cu-NPs. All the devices exhibited forming free bipolar RS characteristics. Room temperature DC current–voltage (I–V) measurements suggest improved resistance windows for the Cu-NP-embedded MIM devices. Analysis of the DC I–V characteristics suggests electrochemical metallization-driven RS, where current conduction follows Ohmic and space-charge-limited conductions mechanism for low and high resistance states, respectively. The resistance windows of the Cu-NPs-embedded MIM structures tested for multiple cycles do not degrade under different bending conditions, indicating their mechanical robustness for potential flexible device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Bonin K D, Edge R, Weller E F, Park M, Schuck P, Clemenger K et al 2003 Science 300 1269

    Article  Google Scholar 

  2. Environ E, Gwon H, Kim H, Lee U, Seo D, Park C et al 2011 Energy Environ. Sci. 1277

  3. Gelinck G H, Huitema H E A, Van Veenendaal E, Cantatore E, Schrijnemakers L, Van Der Putten J B P H et al 2004 Nat. Mater. 3 106

    Article  CAS  Google Scholar 

  4. Nomura K, Ohta H, Takagi A, Kamiya T, Hirano M and Hosono H 2004 Nature 432 488

    Article  CAS  Google Scholar 

  5. McAlpine M C, Ahmad H, Wang D and Heath J R 2007 Nat. Mater. 6 379

    Article  CAS  Google Scholar 

  6. Lv H, Xu X, Liu H, Liu R, Liu Q, Banerjee W et al 2015 Sci. Rep. 5 1

    CAS  Google Scholar 

  7. Shringi A K, Betal A, Sahu S, Saliba M and Kumar M 2022 IEEE Trans. Electron Devices 69 6465

    Article  CAS  Google Scholar 

  8. Mishchenko M A, Bolshakov D I, Lukoyanov V I, Korolev D S, Belov A I, Guseinov D V et al 2022 J. Phys. D Appl. Phys. 55 394002

    Article  Google Scholar 

  9. Tang P, Chen J, Qiu T, Ning H, Fu X, Li M et al 2022 Appl. Sys. Innov. 5 91

    Article  Google Scholar 

  10. Bitla Y and Chu Y H 2017 FlatChem 3 26

    Article  CAS  Google Scholar 

  11. Jana B, Ghosh K, Rudrapal K, Gaur P, Shihabudeen P K and Roy Chaudhuri A 2022 Front. Phys. 9 822005

    Article  Google Scholar 

  12. He Y, Dong H, Meng Q, Jiang L, Shao W, He L et al 2011 Adv. Mater. 23 5502

    Article  CAS  Google Scholar 

  13. Bhansali U S, Khan M A, Cha D, AlMadhoun M N, Li R, Chen L et al 2013 ACS Nano 7 10518

    Article  CAS  Google Scholar 

  14. Min Son J, Seung Song W, Ho Yoo C, Yeol Yun D and Whan Kim T 2012 Appl. Phys. Lett. 100 99

    Article  Google Scholar 

  15. Islam S M, Banerji P and Banerjee S 2014 Org. Electron. 15 144

    Article  CAS  Google Scholar 

  16. Jo H, Ko J, Lim J A, Chang H J and Kim Y S 2013 Macromo. Rapid. Commun. 34 355

    Article  CAS  Google Scholar 

  17. Siddiqui G U, Rehman M M, Yang Y J and Choi K H 2017 J. Mater. Chem. C 5 862

    Article  Google Scholar 

  18. Li Y, Cui X, Tian M, Wang G and Hao X 2021 Acta Mater. 217 117173

    Article  CAS  Google Scholar 

  19. Li Z, Jingyu M, Yi R, Su Ting Hrval and Ye Z 2018 Small 14 1703126

    Article  Google Scholar 

  20. Song S, Cho B, Kim T, Ji Y, Jo M, Wang G et al 2010 Adv. Mater. 22 5048

    Article  CAS  Google Scholar 

  21. Cho B, Yun J, Song S, Ji Y, Kim D and Lee T 2011 Adv. Funct. Mater 21 3976

    Article  CAS  Google Scholar 

  22. Lei J, Ding W-J, Liu C, Wu D and Li W M 2021 APL Mater 9 121110

    Article  CAS  Google Scholar 

  23. Wang T, Brivio S, Cianci E, Wiemer C, Perego M, Spiga S et al 2022 ACS Appl. Mater. Interfaces 14 24565

    Article  CAS  Google Scholar 

  24. Yun H W, Woo H K, Oh S J and Hong S H 2020 Curr. Appl. Phys. 20 288

    Article  Google Scholar 

  25. Delfag M, Katoch R, Jehn J, Gonzalez Y, Schindler C and Ruediger A 2021 Flex Print Electron 6 35011

    Article  CAS  Google Scholar 

  26. Samanta S, Gong X, Zhang P, Han K and Fong X 2019 J. Alloys Compd. 805 915

    Article  CAS  Google Scholar 

  27. Bricalli A, Ambrosi E, Laudato M, Maestro M, Rodriguez R and Ielmini D 2016 IEEE J. Electron Devices Soc. 3 4

    Google Scholar 

  28. Liu C, Huang J, Lai C and Lin C 2013 Nanoscale Res. Lett. 8 1

    Article  Google Scholar 

  29. Dong Y, Li X, Liu S, Zhu Q, Zhang M, Li J G et al 2016 Thin Solid Films 616 635

    Article  CAS  Google Scholar 

  30. Liu Q, Long S, Lv H, Wang W, Niu J, Huo Z et al 2010 ACS Nano 4 6162

    Article  CAS  Google Scholar 

  31. Kim J H, Nam K H, Hwang I, Cho W J, Park B and Chung H B 2014 J. Nanosci. Nanotechnol. 14 9498

    Article  CAS  Google Scholar 

  32. Tao Y, Zhao P and Li Y 2019 Phys. Status Solidi 216 1900278

    Article  CAS  Google Scholar 

  33. Choi B J, Torrezan A C, Norris K J, Miao F, Strachan J P, Zhang M X et al 2013 Nano Lett. 13 3213

    Article  CAS  Google Scholar 

  34. Li P, Wang D, Zhang Z, Guo Y, Jiang L and Xu C 2020 ACS Appl. Mater. Interfaces 12 56186

    Article  CAS  Google Scholar 

  35. Yang Y C, Pan F, Liu Q, Liu M and Zeng F 2009 Nano Lett. 9 1636

    Article  CAS  Google Scholar 

  36. Lampert M A and Mark P (eds) 1970 Current injection in solids (New York: Academic Press)

    Google Scholar 

  37. Yang Y C, Pan F, Zeng F and Liu M 2009 J. Appl. Phys. 106 123705

    Article  Google Scholar 

  38. Banno N, Sakamoto T, Iguchi N, Sunamura H, Terabe K, Hasegawa T et al 2008 IEEE Trans. Electron Devices 55 3283

    Article  CAS  Google Scholar 

  39. Shacham Diamand Y, Dedhia A, Hoffstetter D and Oldham W G 1993 J. Electrochem. Soc. 140 2427

    Article  CAS  Google Scholar 

  40. Kozicki M N and Mitkova M 2006 J. Non-Cryt. Solids 352 567

    Article  CAS  Google Scholar 

  41. Yuan F, Zhang Z, Liu C, Zhou F, Yau H M, Lu W et al 2017 ACS Nano 11 4097

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge SERB (no. CRG/2021/000811) for partial financial support provided to this study, and the Central Research Facility (CRF) of the Indian Institute of Technology Kharagpur for various characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayan Roy Chaudhuri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jana, B., Gaur, P. & Roy Chaudhuri, A. Forming free bipolar resistive switching in SiOx-based flexible MIM devices. Bull Mater Sci 47, 21 (2024). https://doi.org/10.1007/s12034-023-03094-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03094-z

Keywords

Navigation