Skip to main content

Advertisement

Log in

Lafora progressive myoclonus epilepsy: Disease mechanism and therapeutic attempts

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Lafora disease (LD) is a life-threatening autosomal recessive and progressive neurodegenerative disorder that primarily affects adolescents, resulting in mortality within a decade of onset. The symptoms of LD include epileptic seizures, ataxia, dementia, and psychosis. The underlying pathology involves the presence of abnormal glycogen inclusions in neurons and other tissues, which may contribute to neurodegeneration. LD is caused by loss-of-function mutations in either the EPM2A gene or the NHLRC1 gene. These two genes, respectively, code for laforin phosphatase and malin ubiquitin ligase, and are thought to function, as a functional complex, in diverse cellular pathways. One of the major pathways affected in LD is glycogen metabolism; defects here lead to abnormally higher levels of glycogen and its hyperphosphorylation and aggregation, resulting in the formation of Lafora inclusion bodies. Currently, there is no effective therapy for LD. Studies, particularly from animal models, provide distinct insights into the fundamental mechanisms of diseases and potential avenues for therapeutic interventions. The purpose of this review is to present a comprehensive overview of our current knowledge regarding the disease, its genetics, the animal models that have been developed, and the therapeutic strategies that are being developed based on an understanding of the disease mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  • Aguado C, Sarkar S, Korolchuk VI, et al. 2010 Laforin, the most common protein mutated in Lafora disease, regulates autophagy. Hum. Mol. Genet. 19 2867–2876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahonen S, Seath I, Rusbridge C, et al. 2018 Nationwide genetic testing towards eliminating Lafora disease from miniature wirehaired dachshunds in the United Kingdom. Canine Genet. Epidemiol. 27 2

    Article  Google Scholar 

  • Ahonen S, Nitschke S, Grossman TR, et al. 2021 Gys1 antisense therapy rescues neuropathological bases of murine Lafora disease. Brain 144 2985–2993

    Article  PubMed  PubMed Central  Google Scholar 

  • Annesi G, Sofia V, Gambardella A, et al. 2004 A novel exon 1 mutation in a patient with atypical lafora progressive myoclonus epilepsy seen as childhood-onset cognitive deficit. Epilepsia 45 294–295

    Article  PubMed  Google Scholar 

  • Aso E, Andrés-Benito P, Grau-Escolano J, et al. 2020 Cannabidiol-enriched extract reduced the cognitive impairment but not the epileptic seizures in a Lafora disease animal model. Cannabis Cannabinoid Res. 5 150–163

    Article  PubMed  PubMed Central  Google Scholar 

  • Barbieri F, Santangelo R, Gasparo-Rippa P, et al. 1987 Biopsy findings (cerebral cortex, muscle, skin) in Lafora disease. Acta. Neurol. 9 81–94

    CAS  Google Scholar 

  • Baykan B, Striano P, Gianotti S, et al. 2005 Late-onset and slow-progressing Lafora disease in four siblings with EPM2B mutation. Epilepsia 46 1695–1697

    Article  CAS  PubMed  Google Scholar 

  • Berthier A, Payá M, García-Cabrero AM, et al. 2016 Pharmacological interventions to ameliorate neuropathological symptoms in a mouse model of Lafora disease. Mol. Neurobiol. 53 1296–1309

    Article  CAS  PubMed  Google Scholar 

  • Bhat S and Ganesh S 2018 New discoveries in progressive myoclonus epilepsies: a clinical outlook. Expert. Rev. Neurother. 18 649–667

    Article  CAS  PubMed  Google Scholar 

  • Bisulli F, Muccioli L, d’Orsi G, et al. 2019 Treatment with metformin in twelve patients with Lafora disease. Orphanet J. Rare Dis. 14 149

    Article  PubMed  PubMed Central  Google Scholar 

  • Blair DR, Hoffmann TJ and Shieh JT 2022 Common genetic variation associated with Mendelian disease severity revealed through cryptic phenotype analysis. Nat. Commun. 27 3675

    Article  Google Scholar 

  • Brewer MK, Uittenbogaard A, Austin GL, et al. 2019 Targeting pathogenic lafora bodies in Lafora disease using an antibody-enzyme fusion. Cell. Metab. 30 689–705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burgos DF, Machío-Castello M, Iglesias-Cabeza N, et al. 2023 Early treatment with metformin improves neurological outcomes in Lafora disease. Neurotherapeutics 20 230–244

    Article  CAS  PubMed  Google Scholar 

  • Busard HL, Renier WO and Gabreëls FJ 1987 Lafora disease: a quantitative morphological and biochemical study of the cerebral cortex. Clin. Neuropathol. 6 1–6

    CAS  PubMed  Google Scholar 

  • Cardinali S, Canafoglia L, Bertoli S, et al. 2006 A pilot study of a ketogenic diet in patients with Lafora body disease. Epilepsy Res. 69 129–134

    Article  CAS  PubMed  Google Scholar 

  • Carpenter S and Karpati G 1981 Sweat gland duct cells in Lafora disease: diagnosis by skin biopsy. Neurology 31 1564–1568

    Article  CAS  PubMed  Google Scholar 

  • Chan EM, Young EJ, Ianzano L, et al. 2003 Mutations in NHLRC1 cause progressive myoclonus epilepsy. Nat. Genet. 35 125–127

    Article  CAS  PubMed  Google Scholar 

  • Criado O, Aguado C, Gayarre J, et al. 2012 Lafora bodies and neurological defects in malin-deficient mice correlate with impaired autophagy. Hum. Mol. Genet. 21 1521–1533

    Article  CAS  PubMed  Google Scholar 

  • Davarzani A, Shahrokhi A, Hashemi SS, et al. 2022 The second family affected with a PRDM8-related disease. Neurol. Sci. 43 3847–3855

    Article  PubMed  Google Scholar 

  • Della Vecchia S, Ogi A, Licitra R, et al. 2022 Trehalose treatment in zebrafish model of Lafora disease. Int. J. Mol. Sci. 20 6874

    Article  Google Scholar 

  • Demir CF, Ozdemir HH and Müngen B 2013 Efficacy of topiramate as add-on therapy in two different types of progressive myoclonic epilepsy. Acta Medica 56 36–38

    PubMed  Google Scholar 

  • DePaoli-Roach AA, Tagliabracci VS, Segvich DM, et al. 2010 Genetic depletion of the malin E3 ubiquitin ligase in mice leads to lafora bodies and the accumulation of insoluble laforin. J. Biol. Chem. 285 25372–25381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dirani M, Nasreddine W, Abdulla F, et al. 2014 Seizure control and improvement of neurological dysfunction in Lafora disease with perampanel. Epilepsy Behav. Case Rep. 2 164–166

    Article  PubMed  PubMed Central  Google Scholar 

  • Dubey D and Ganesh S 2008 Modulation of functional properties of laforin phosphatase by alternative splicing reveals a novel mechanism for the EPM2A gene in Lafora progressive myoclonus epilepsy. Hum. Mol. Genet. 17 3010–3020

    Article  CAS  PubMed  Google Scholar 

  • Dubey D, Parihar R and Ganesh S 2012 Identification and characterization of novel splice variants of the human EPM2A gene mutated in Lafora progressive myoclonus epilepsy. Genomics 99 36–43

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Sánchez ME, Criado-García O, Heath KE, et al. 2003 Laforin, the dual-phosphatase responsible for Lafora disease, interacts with R5 (PTG), a regulatory subunit of protein phosphatase-1 that enhances glycogen accumulation. Hum. Mol. Genet. 12 3161–3171

    Article  PubMed  Google Scholar 

  • Flegel T, Kornberg M, Mühlhause F, et al. 2021 A retrospective case series of clinical signs in 28 beagles with Lafora disease. J. Vet. Intern. Med. 35 2359–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Ganesh S, Agarwala KL, Ueda K, et al. 2000 Laforin, defective in the progressive myoclonus epilepsy of Lafora type, is a dual-specificity phosphatase associated with polyribosomes. Hum. Mol. Genet. 9 2251–2261

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Agarwala KL, Amano K, et al. 2001 Regional and developmental expression of Epm2a gene and its evolutionary conservation. Biochem. Biophys. Res. Commun. 283 1046–1053

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Delgado-Escueta AV, Sakamoto T, et al. 2002a Targeted disruption of the Epm2a gene causes formation of Lafora inclusion bodies, neurodegeneration, ataxia, myoclonus epilepsy and impaired behavioral response in mice. Hum. Mol. Genet. 11 1251–1262

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Delgado-Escueta AV, Suzuki T, et al. 2002b Genotype-phenotype correlations for EPM2A mutations in Lafora’s progressive myoclonus epilepsy: exon 1 mutations associate with an early-onset cognitive deficit subphenotype. Hum. Mol. Genet. 11 1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Tsurutani N, Suzuki T, et al. 2003 The Lafora disease gene product laforin interacts with HIRIP5, a phylogenetically conserved protein containing a NifU-like domain. Hum. Mol. Genet. 12 2359–2368

    Article  CAS  PubMed  Google Scholar 

  • Ganesh S, Tsurutani N, Suzuki T, et al. 2004 The carbohydrate-binding domain of Lafora disease protein targets Lafora polyglucosan bodies. Biochem. Biophys. Res. Commun. 313 1101–1109

    Article  CAS  PubMed  Google Scholar 

  • Garyali P, Siwach P, Singh PK, et al. 2009 The malin-laforin complex suppresses the cellular toxicity of misfolded proteins by promoting their degradation through the ubiquitin-proteasome system. Hum. Mol. Genet. 18 688–700

    Article  CAS  PubMed  Google Scholar 

  • Garyali P, Segvich DM, DePaoli-Roach AA, et al. Protein degradation and quality control in cells from laforin and malin knockout mice. J. Biol. Chem. 289 20606–20614

  • Gentry MS, Worby CA and Dixon JE 2005 Insights into Lafora disease: malin is an E3 ubiquitin ligase that ubiquitinates and promotes the degradation of laforin. Proc. Natl. Acad. Sci. USA 102 8501–8506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldsmith D and Minassian BA 2016 Efficacy and tolerability of perampanel in ten patients with Lafora disease. Epilepsy Behav. 62 132–135

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Abad C, Gómez-Garre P, Gutiérrez-Delicado E, et al. 2005 Lafora disease due to EPM2B mutations: a clinical and genetic study. Neurology 64 982–986

    Article  PubMed  Google Scholar 

  • Gredal H, Berendt M and Leifsson PS 2003 Progressive myoclonus epilepsy in a beagle. J. Small Anim. Pract. 44 511–514

    Article  CAS  PubMed  Google Scholar 

  • Guerrero R, Vernia S, Sanz R, et al. 2011 A PTG variant contributes to a milder phenotype in Lafora disease. PLoS One 6 e21294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumusgoz E, Guisso DR, Kasiri S, et al. 2021 Targeting Gys1 with AAV-SaCas9 decreases pathogenic polyglucosan bodies and neuroinflammation in adult polyglucosan body and Lafora disease mouse models. Neurotherapeutics 18 1414–1425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gumusgoz E, Kasiri S, Guisso DR, et al. 2022 AAV-mediated artificial mirna reduces pathogenic polyglucosan bodies and neuroinflammation in adult polyglucosan body and Lafora disease mouse models. Neurotherapeutics 19 982–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harriman DG, Millar JH and Stevenson AC 1955 Progressive familial myoclonic epilepsy in three families: its clinical features and pathological basis. Brain 78 325–349

    Article  CAS  PubMed  Google Scholar 

  • Hegreberg GA and Padgett GA 1976 Inherited progressive epilepsy of the dog with comparisons to Lafora’s disease of man. Fed. Proc. 35 1202–1205

    CAS  PubMed  Google Scholar 

  • Holland JM, Davis WC, Prieur DJ, et al. 1970 Lafora’s disease in the dog. A comparative Study. Am. J. Pathol. 58 509–530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Israelian L, Wang P, Gabrielian S, et al. 2020 Ketogenic diet reduces Lafora bodies in murine Lafora disease. Neurol. Genet. 6 e533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Israelian L, Nitschke S, Wang P, et al. 2021 Ppp1r3d deficiency preferentially inhibits neuronal and cardiac Lafora body formation in a mouse model of the fatal epilepsy Lafora disease. J. Neurochem. 157 1897–1910

    Article  CAS  PubMed  Google Scholar 

  • Jain N, Rai A, Mishra R, et al. 2017 Loss of malin, but not laforin, results in compromised autophagic flux and proteasomal dysfunction in cells exposed to heat shock. Cell Stress Chaperones 22 307–315

    Article  CAS  PubMed  Google Scholar 

  • Jansen AC and Andermann E 2007 Progressive myoclonus epilepsy, Lafora type; in GeneReviews® (Eds.) MP Adam, GM Mirzaa, RA Pagon, et al. (University of Washington)

  • Krstić RV 1989 Three-dimensional microarchitecture of organs reconstructed on the basis of modern histological observation methods. Prog. Clin. Biol. Res. 295 623–628

    PubMed  Google Scholar 

  • Lafora GR 1911 Über das vorkommen amyloider körperchen im innern der ganglienzellen: zugleich en beitrag zum studium der amyloiden substanz im nerven system. Virchows Arch. Pathol. Anat. Physiol. Klin. Med. 205 295–303

    Article  CAS  Google Scholar 

  • Liu Y, Wang Y, Wu C, et al. 2006 Dimerization of Laforin is required for its optimal phosphatase activity, regulation of GSK3beta phosphorylation, and Wnt signaling. J. Biol. Chem. 281 34768–34774

  • Liu Y, Zeng L, Ma K, et al. 2014 Laforin-malin complex degrades polyglucosan bodies in concert with glycogen debranching enzyme and brain isoform glycogen phosphorylase. Mol. Neurobiol. 49 645–657

    Article  CAS  PubMed  Google Scholar 

  • Lohi H, Ianzano L, Zhao XC, et al. 2005a Novel glycogen synthase kinase 3 and ubiquitination pathways in progressive myoclonus epilepsy. Hum. Mol. Genet. 14 2727–2736

    Article  CAS  PubMed  Google Scholar 

  • Lohi H, Young EJ, Fitzmaurice SN, et al. 2005b Expanded repeat in canine epilepsy. Science 307 81

    Article  CAS  PubMed  Google Scholar 

  • López-González I, Viana R, Sanz P, et al. 2017 Inflammation in Lafora disease: evolution with disease progression in laforin and malin knock-out mouse models. Mol. Neurobiol. 54 3119–3130

    Article  PubMed  Google Scholar 

  • Machado-Salas J, Avila-Costa MR, Guevara P, et al. 2012 Ontogeny of lafora bodies and neurocytoskeleton changes in laforin-deficient mice. Exp. Neurol. 236 131–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mackenzie CD and Johnson RP 1976 Lafora’s disease in a dog. Aust. Vet. J. 52 144

    Article  CAS  PubMed  Google Scholar 

  • Maddox LO, Descartes M, Collins J, et al. 1997 Identification of a recombination event narrowing the Lafora disease gene region. J. Med. Genet. 34 590–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markussen KH, Macedo JKA, Machío M, et al. 2021 The 6th international Lafora epilepsy workshop: advances in the search for a cure. Epilepsy Behav. 119 107975

    Article  PubMed  PubMed Central  Google Scholar 

  • Mestas J and Hughes CC 2004 Of mice and not men: differences between mouse and human immunology. J. Immunol. 172 2731–2738

    Article  CAS  PubMed  Google Scholar 

  • Mikati MA and Tabbara F 2017 Managing lafora body disease with vagal nerve stimulation. Epileptic. Disord. 19 82–86

    Article  PubMed  Google Scholar 

  • Minassian BA, Lee JR, Herbrick JA, et al. 1998 Mutations in a gene encoding a novel protein tyrosine phosphatase cause progressive myoclonus epilepsy. Nat. Genet. 20 171–174

    Article  CAS  PubMed  Google Scholar 

  • Minassian BA, Ianzano L, Delgado-Escueta AV, et al. 2000 Identification of new and common mutations in the EPM2A gene in Lafora disease. Neurology 54 488–490

    Article  CAS  PubMed  Google Scholar 

  • Mishra N, Wang P, Goldsmith D, et al. 2017 Everolimus does not prevent Lafora body formation in murine Lafora disease. Neurol. Genet. 3 e127

    Article  PubMed  PubMed Central  Google Scholar 

  • Mitra S, Chen B, Wang P, et al. 2023 Laforin targets malin to glycogen in Lafora progressive myoclonus epilepsy. Dis. Model. Mech. 16 dmm049802

    Article  PubMed  PubMed Central  Google Scholar 

  • Mittal S, Dubey D, Yamakawa K, et al. 2007 Lafora disease proteins malin and laforin are recruited to aggresomes in response to proteasomal impairment. Hum. Mol. Genet. 16 753–762

    Article  CAS  PubMed  Google Scholar 

  • Mittal S, Upadhyay M, Singh PK, et al. 2015 Interdependence of laforin and malin proteins for their stability and functions could underlie the molecular basis of locus heterogeneity in Lafora disease. J. Biosci. 40 863–871

    Article  CAS  PubMed  Google Scholar 

  • Mollá B, Heredia M, Campos Á, et al. 2022 Pharmacological modulation of glutamatergic and neuroinflammatory pathways in a Lafora disease mouse model. Mol. Neurobiol. 59 6018–6032

    Article  PubMed  PubMed Central  Google Scholar 

  • Moreno D, Towler MC, Hardie DG, et al. 2010 The laforin-malin complex, involved in Lafora disease, promotes the incorporation of K63-linked ubiquitin chains into AMP-activated protein kinase beta subunits. Mol. Biol. Cell 21 2578–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nanduri AS, Kaushal N, Clusmann H, et al. 2008 The maestro don Gonzalo Rodríguez-Lafora. Epilepsia 49 943–947

    Article  PubMed  Google Scholar 

  • Nitschke F, Wang P, Schmieder P, et al. 2013 Hyperphosphorylation of glucosyl C6 carbons and altered structure of glycogen in the neurodegenerative epilepsy Lafora disease. Cell Metab. 17 756–767

    Article  CAS  PubMed  Google Scholar 

  • Nitschke F, Ahonen SJ, Nitschke S, et al. 2018 Lafora disease - from pathogenesis to treatment strategies. Nat. Rev. Neurol. 14 606–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norio R and Koskiniemi M 1979 Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients. Clin. Genet. 15 382–398

    Article  CAS  PubMed  Google Scholar 

  • Parihar R, Rai A and Ganesh S 2018 Lafora disease: from genotype to phenotype. J. Genet. 97 611–624

    Article  CAS  PubMed  Google Scholar 

  • Pederson BA, Turnbull J, Epp JR, et al. 2013 Inhibiting glycogen synthesis prevents Lafora disease in a mouse model. Ann. Neurol. 74 297–300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri R, Suzuki T, Yamakawa K, et al. 2009 Hyperphosphorylation and aggregation of Tau in laforin-deficient mice, an animal model for Lafora disease. J. Biol. Chem. 284 22657–22663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri R, Suzuki T, Yamakawa K, et al. 2012 Dysfunctions in endosomal-lysosomal and autophagy pathways underlie neuropathology in a mouse model for Lafora disease. Hum. Mol. Genet. 21 175–184

    Article  PubMed  Google Scholar 

  • Rahit KMTH and Tarailo-Graovac M 2020 Genetic modifiers and rare mendelian disease. Genes 11 239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rai A and Ganesh S 2019 Polyglucosan bodies in aged brain and neurodegeneration: cause or consequence; in Models, molecules and mechanisms in biogerontology (Ed.) Rath PC (Springer Nature Singapore Pte Ltd, Singapore) pp 57–89

  • Rai A, Mishra R and Ganesh S 2017 Suppression of leptin signaling reduces polyglucosan inclusions and seizure susceptibility in a mouse model for Lafora disease. Hum. Mol. Genet. 26 4778–4785

    Article  CAS  PubMed  Google Scholar 

  • Rai A, Singh PK, Singh V, Kumar V, Mishra R, Thakur AK, Mahadevan A, Shankar SK, et al. 2018 Glycogen synthase protects neurons from cytotoxicity of mutant huntingtin by enhancing the autophagy flux. Cell Death Dis. 9 201

    Article  PubMed  PubMed Central  Google Scholar 

  • Raththagala M, Brewer MK, Parker MW, et al. 2014 Structural mechanism of laforin function in glycogen dephosphorylation and lafora disease. Mol. Cell. 57 261–272

    Article  PubMed  PubMed Central  Google Scholar 

  • Romá-Mateo C, Aguado C, García-Giménez JL, et al. 2014 Increased oxidative stress and impaired antioxidant response in Lafora disease. Mol. Neurobiol. 51 932–946

    Article  PubMed  Google Scholar 

  • Ronnett GV, Ramamurthy S, Kleman AM, et al. 2009 AMPK in the brain: its roles in energy balance and neuroprotection. J. Neurochem. 109 17–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saez I, Duran J, Sinadinos C, et al. 2014 Neurons have an active glycogen metabolism that contributes to tolerance to hypoxia. J. Cereb. Blood Flow Metab. 34 945–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sainz J, Minassian BA, Serratosa JM, et al. 1997 Lafora progressive myoclonus epilepsy: narrowing the chromosome 6q24 locus by recombinations and homozygosities. Am. J. Hum. Genet. 61 1205–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai M, Austin J, Witmer F, et al. 1970 Studies in myoclonus epilepsy (Lafora body form). II. Polyglucosans in the systemic deposits of myoclonus epilepsy and in corpora amylacea. Neurology 20 160–176

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Elexpuru G, Serratosa JM and Sánchez MP 2017a Sodium selenate treatment improves symptoms and seizure susceptibility in a malin-deficient mouse model of Lafora disease. Epilepsia 58 467–475

    Article  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Elexpuru G, Serratosa JM, Sanz P, et al. 2017b 4-Phenylbutyric acid and metformin decrease sensitivity to pentylenetetrazol-induced seizures in a malin knockout model of Lafora disease. Neuroreport 28 268–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Sankhala RS, Koksal AC, Ho L, et al. 2015 Dimeric quaternary structure of human laforin. J. Biol. Chem. 290 4552–4559

    Article  CAS  PubMed  Google Scholar 

  • Sanz P and Serratosa JM 2020 Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert. Rev. Mol. Med. 22 e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwarz GA and Yanoff M 1965 Lafora’s disease distinct clinico-pathologic form of unverricht’s syndrome. Arch. Neurol. 12 172–188

    Article  CAS  PubMed  Google Scholar 

  • Sengupta S, Badhwar I, Upadhyay M, et al. 2011 Malin and laforin are essential components of a protein complex that protects cells from thermal stress. J. Cell Sci. 124 2277–2286

    Article  CAS  PubMed  Google Scholar 

  • Sharma J, Rao SN, Shankar SK, et al. 2011 Lafora disease ubiquitin ligase malin promotes proteasomal degradation of neuronatin and regulates glycogen synthesis. Neurobiol. Dis. 44 133–141

    Article  CAS  PubMed  Google Scholar 

  • Singh S and Ganesh S 2009 Lafora progressive myoclonus epilepsy: a meta-analysis of reported mutations in the first decade following the discovery of the EPM2A and NHLRC1 genes. Hum. Mutat. 30 715–723

    Article  CAS  PubMed  Google Scholar 

  • Singh S and Ganesh S 2012 Phenotype variations in Lafora progressive myoclonus epilepsy: possible involvement of genetic modifiers? J. Hum. Genet. 57 283–285

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Sethi I, Francheschetti S, et al. 2006 Novel NHLRC1 mutations and genotype-phenotype correlations in patients with Lafora’s progressive myoclonic epilepsy. J. Med. Genet. 43 e48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Singh S and Ganesh S 2011 The laforin-malin complex negatively regulates glycogen synthesis by modulating cellular glucose uptake via glucose transporters. Mol. Cell. Biol. 32 652–663

    Article  PubMed  Google Scholar 

  • Singh PK, Singh S and Ganesh S 2013 Activation of serum/glucocorticoid-induced kinase 1 (SGK1) underlies increased glycogen levels, mTOR activation, and autophagy defects in Lafora disease. Mol. Biol. Cell. 24 3776–3786

    Article  PubMed  PubMed Central  Google Scholar 

  • Sinha P, Verma B and Ganesh S 2021a Dexamethasone-induced activation of heat shock response ameliorates seizure susceptibility and neuroinflammation in mouse models of Lafora disease. Exp. Neurol. 340 113656

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Verma B and Ganesh S 2021b Trehalose ameliorates seizure susceptibility in lafora disease mouse models by suppressing neuroinflammation and endoplasmic reticulum stress. Mol. Neurobiol. 58 1088–1101

    Article  CAS  PubMed  Google Scholar 

  • Sinha P, Verma B and Ganesh S 2022 Age-dependent reduction in the expression levels of genes involved in progressive myoclonus epilepsy correlates with increased neuroinflammation and seizure susceptibility in mouse models. Mol. Neurobiol. 59 5532–5548

    Article  CAS  PubMed  Google Scholar 

  • Solaz-Fuster MC, Gimeno-Alcañiz JV, Ros S, et al. 2007 Regulation of glycogen synthesis by the laforin-malin complex is modulated by the AMP-activated protein kinase pathway. Hum. Mol. Genet. 17 667–678

    Article  PubMed  Google Scholar 

  • Tagliabracci VS, Turnbull J, Wang W, et al. 2007 Laforin is a glycogen phosphatase, deficiency of which leads to elevated phosphorylation of glycogen in vivo. Proc. Natl. Acad. Sci. USA 104 19262–19266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tagliabracci VS, Girard JM, Segvich D, et al. 2008 Abnormal metabolism of glycogen phosphate as a cause for Lafora disease. J. Biol. Chem. 283 33816–33825

  • Turnbull J, DePaoli-Roach AA, Zhao X, et al. 2011 PTG depletion removes Lafora bodies and rescues the fatal epilepsy of Lafora disease. PLoS Genet. 7 e1002037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbull J, Girard JM, Lohi H, et al. 2012 Early-onset Lafora body disease. Brain 135 2684–2698

    Article  PubMed  PubMed Central  Google Scholar 

  • Turnbull J, Tiberia E, Striano P, et al. 2016 Lafora disease. Epileptic Disord. 18 38–62

    Article  PubMed  PubMed Central  Google Scholar 

  • Upadhyay M, Agarwal S, Bhadauriya P, et al. 2017 Loss of laforin or malin results in increased Drp1 level and concomitant mitochondrial fragmentation in Lafora disease mouse models. Neurobiol. Dis. 100 39–51

    Article  CAS  PubMed  Google Scholar 

  • Valles-Ortega J, Duran J, Garcia-Rocha M, et al. 2011 Neurodegeneration and functional impairments associated with glycogen synthase accumulation in a mouse model of Lafora disease. EMBO Mol. Med. 3 667–681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Heycop Ten Ham MW 1975 Lafora disease, a form of progressive myoclonus epilepsy; in The epilepsies. Handbook of clinical neurology (Eds.) PJ Vinken and GW Bruyn (North-Holland, Amsterdam) pp 382–422

  • Varea O, Duran J, Aguilera M, et al. 2021 Suppression of glycogen synthesis as a treatment for Lafora disease: Establishing the window of opportunity. Neurobiol. Dis. 147 105173

    Article  CAS  PubMed  Google Scholar 

  • Vernia S, Rubio T, Heredia M, et al. 2009 Increased endoplasmic reticulum stress and decreased proteasomal function in lafora disease models lacking the phosphatase laforin. PLoS One 4 e5907

    Article  PubMed  PubMed Central  Google Scholar 

  • Vilchez D, Ros S, Cifuentes D, et al. 2007 Mechanism suppressing glycogen synthesis in neurons and its demise in progressive myoclonus epilepsy. Nat. Neurosci. 10 1407–1413

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Stuckey JA, Wishart MJ, et al. 2002 A unique carbohydrate binding domain targets the Lafora disease phosphatase to glycogen. J. Biol. Chem. 277 2377–2380

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Ma K, Wang P, et al. 2013 Laforin prevents stress-induced polyglucosan body formation and Lafora disease progression in neurons. Mol. Neurobiol. 48 49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worby CA, Gentry MS and Dixon JE 2006 Laforin, a dual specificity phosphatase that dephosphorylates complex carbohydrates. J. Biol. Chem. 281 30412–30418

    Article  CAS  PubMed  Google Scholar 

  • Worby CA, Gentry MS and Dixon JE 2008 Malin decreases glycogen accumulation by promoting the degradation of protein targeting to glycogen (PTG). J. Biol. Chem. 283 4069–4076

    Article  CAS  PubMed  Google Scholar 

  • Yanoff M and Schwarz GA 1965 Lafora’s disease–a distinct genetically determined form of Unverricht’s syndrome. J. Genet. Hum. 14 235–244

    CAS  PubMed  Google Scholar 

  • Zeng L, Wang Y and Baba O 2012 Laforin is required for the functional activation of malin in endoplasmic reticulum stress resistance in neuronal cells. FEBS J. 279 2467–2478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the past and present members of the laboratory for their contribution to the Lafora disease biology project.

Funding

Research works on Lafora disease in the authors’ laboratories are supported by the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (CRG/2020/001371 and JCB/2022/000007).

Author information

Authors and Affiliations

Authors

Contributions

Both RP and SG were involved in the conceptualization, collection of data from literature, and writing of the manuscript.

Corresponding author

Correspondence to Subramaniam Ganesh.

Ethics declarations

Conflict of interest

None to declare.

Additional information

Corresponding editor: Alok Bhattacharya

This article is part of the Topical Collection: The Rare Genetic Disease Research Landscape in India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parihar, R., Ganesh, S. Lafora progressive myoclonus epilepsy: Disease mechanism and therapeutic attempts. J Biosci 49, 22 (2024). https://doi.org/10.1007/s12038-023-00407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12038-023-00407-6

Keywords

Navigation