Skip to main content

Advertisement

Log in

Development and Characterization of Glimepiride-Loaded Polymeric Nanoparticles: Formulation Design and Evaluation

  • Original Article
  • Published:
Journal of Pharmaceutical Innovation Aims and scope Submit manuscript

Abstract

Purpose

This study was aimed to develop polymeric nanoparticles (PNPs) using chitosan (CTN), polyvinyl pyrrolidone (PVP), and Tween 80 for dissolution enhancement of poorly water-soluble antidiabetic drug: glimeperide (GLM).

Methods

GLM-loaded PNPs were developed for increasing the dissolution and solubility of GLM by using different amounts of CTN as polymer, PVP, and Tween 80 as stabilizers and tri-polyphosphate (TPP) as a crosslinking agent. PNPs were prepared using a combined approach of solvent evaporation and ionic gelation techniques. The newly fabricated PNPs were further characterized for percent encapsulation efficiency (%EE), compatibility studies, average particle size, morphology, thermal behavior, XRD examination, and dissolution studies at different biorelevant pH conditions.

Results

The prepared PNPs showed % encapsulation efficiency in the range of 55.90 to 93.25%. Fourier transform infrared studies revealed compatibility of GLM with formulation composites. The optimized PNPs F1PVP and F4TW80 showed particle size in nanoscale range 323 nm and 149 nm, respectively. SEM indicated formation of irregular (flakes) shaped particles. DSC and PXRD studies revealed reduction in crystallinity of the GLM inside PNPs thus promoting the dissolution. The dissolution studies at biorelevant acidic pH 1.2 and biorelevant basic pH 6.8 demonstrated remarkable improvement in dissolution profile compared to pure aqueous dispersion of GLM.

Conclusion

Overall results of the study suggested that CTN-based PNPs stabilized with PVP and Tween 80 can act as promising carriers for oral drug delivery of GLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Authors declare that all the data supporting the findings of this study are included in the article.

References

  1. Basahih TS, et al. Improved transmucosal delivery of glimepiride via unidirectional release buccal film loaded with vitamin E TPGS-based nanocarrier. 2020;18(3):1559325820945164.

    CAS  Google Scholar 

  2. Papatheodorou K, Banach M, Bekiari E, Rizzo M, Edmonds M. Complications of diabetes 2017. J Diabetes Res. 2018;2018:1–4.

    Article  Google Scholar 

  3. Yadav SK, Mishra S, Mishra B. Eudragit-based nanosuspension of poorly water-soluble drug: formulation and in vitro–in vivo evaluation. AAPS PharmSciTech. 2012;13:1031–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413–20.—Backstory of BCS. AAPS J. 2014;16:894–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Babu RJ, Pandit J. Effect of aging on the dissolution stability of glibenclamide/β-cyclodextrin complex. Drug Dev Ind Pharm. 1999;25(11):1215–9.

    Article  CAS  PubMed  Google Scholar 

  6. Ammar H, et al. Formulation and biological evaluation of glimepiride–cyclodextrin–polymer systems. Int J Pharm. 2006;309(1–2):129–38.

    Article  CAS  PubMed  Google Scholar 

  7. Ilić I, et al. Microparticle size control and glimepiride microencapsulation using spray congealing technology. Int J Pharm. 2009;381(2):176–83.

    Article  PubMed  Google Scholar 

  8. Ezhilarasi P, et al. Nanoencapsulation techniques for food bioactive components: a review. Food Bioprocess Technol. 2013;6(3):628–47.

    Article  CAS  Google Scholar 

  9. Jacobs C, Müller RH. Production and characterization of a budesonide nanosuspension for pulmonary administration. Pharm Res. 2002;19:189–94.

    Article  CAS  PubMed  Google Scholar 

  10. Junghanns J-UA, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed. 2008;3(3):295–310.

    CAS  Google Scholar 

  11. Reichal CR, Lakshmi JB, Ravi T. Studies on formulation and in vitro evaluation of glimepiride floating tablets. J Chem Pharm Res. 2011;3(3):159–64.

    Google Scholar 

  12. Shariatinia Z. Pharmaceutical applications of chitosan. Advances in colloid and interface science. 2019;263:131–94.

    Article  CAS  PubMed  Google Scholar 

  13. Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2015;2(3):204–26.

    Article  Google Scholar 

  14. Zhu D, et al. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt. Mater Sci Eng C. 2016;61:79–84.

    Article  CAS  Google Scholar 

  15. Aslam M, Kalyar MA, Raza ZA. Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polym Eng Sci. 2018;58(12):2119–32.

    Article  CAS  Google Scholar 

  16. Koczkur KM, et al. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Trans. 2015;44(41):17883–905.

    Article  CAS  PubMed  Google Scholar 

  17. Bekhit M, et al. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications. J Environ Sci Health, Part A. 2020;55(10):1210–7.

    Article  CAS  Google Scholar 

  18. Pawde DM, et al. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm J. 2020;28(12):1616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yousaf R, et al. Development and in-vitro evaluation of chitosan and glyceryl monostearate based matrix lipid polymer hybrid nanoparticles (LPHNPs) for oral delivery of itraconazole. Heliyon. 2023;9:e14281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mehata AK, Bharti S, Singh P, Viswanadh MK, Kumari L, Agrawal P, Singh S, Koch B, Muthu MS. Trastuzumab decorated TPGS-g-chitosan nanoparticles for targeted breast cancer therapy. Colloids Surf B. 2019;173:366–77.

    Article  Google Scholar 

  21. Park H, Seo HJ, Hong SH, Ha ES, Lee S, Kim JS, Baek IH, Kim MS, Hwang SJ. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: influence of molar ratio and preparation methods. Int J Pharm. 2020;581:119232.

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Pan T, Cui Y, Li X, Gao J, Yang W, Shen S. Improved oral bioavailability of poorly water-soluble glimepiride by utilizing microemulsion technique. Int J Nanomed. 2016;11:3777–88.

    Article  CAS  Google Scholar 

  23. Kilor V, Sapkal N, Daud A, Humne S, Gupta T. Development of stable nanosuspension loaded oral films of glimepiride with improved bioavailability. Int J Appl Pharm. 2017;9(2):28–33.

    Article  CAS  Google Scholar 

  24. Patil GB, Patil ND, Deshmukh PK, Patil PO, Bari SB. Nanostructured lipid carriers as a potential vehicle for carvedilol delivery: application of factorial design approach. Artif Cells Nanomed Biotechnol. 2016;44(1):12–9.

    Article  CAS  PubMed  Google Scholar 

  25. Ma X, Williams RO III. Polymeric nanomedicines for poorly soluble drugs in oral delivery systems: an update. J Pharm Investig. 2018;48(1):61–75.

    Article  CAS  Google Scholar 

  26. Yan J, Guan ZY, Zhu WF, Zhong LY, Qiu ZQ, Yue PF, Wu WT, Liu J, Huang X. Preparation of puerarin chitosan oral nanoparticles by ionic gelation method and its related kinetics. Pharmaceutics. 2020;12(3):216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mao S, et al. Effects of process and formulation parameters on characteristics and internal morphology of poly (d, l-lactide-co-glycolide) microspheres formed by the solvent evaporation method. Eur J Pharm Biopharm. 2008;68(2):214–23.

    Article  CAS  PubMed  Google Scholar 

  28. Maji R, Ray S, Das B, Nayak AK. Ethyl cellulose microparticles containing metformin HCl by emulsification-solvent evaporation technique: effect of formulation variables. Int Sch Res Notices. 2012;2012:801827.

    Google Scholar 

  29. Khan MI, et al. Ultrasonic processing technique as a green preparation approach for diacerein-loaded niosomes. AAPS PharmSciTech. 2017;18(5):1554–63.

    Article  CAS  PubMed  Google Scholar 

  30. Wu Y, et al. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. Int J Pharm. 2005;295(1–2):235–45.

    Article  CAS  PubMed  Google Scholar 

  31. Vandenberg G, et al. Factors affecting protein release from alginate–chitosan coacervate microcapsules during production and gastric/intestinal simulation. J Control Release. 2001;77(3):297–307.

    Article  CAS  PubMed  Google Scholar 

  32. Khan MI, Madni A, Peltonen L. Development and in-vitro characterization of sorbitan monolaurate and poloxamer 184 based niosomes for oral delivery of diacerein. Eur J Pharm Sci. 2016;95:88–95.

    Article  CAS  PubMed  Google Scholar 

  33. Ren T, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed. 2009;20(10):1369–80.

    Article  CAS  PubMed  Google Scholar 

  34. Ray S, et al. Polysorbate 80 coated crosslinked chitosan nanoparticles of ropinirole hydrochloride for brain targeting. J Drug Deliv Sci Technol. 2018;48:21–9.

    Article  CAS  Google Scholar 

  35. Bera H, et al. Carboxymethyl fenugreek galactomannan-gellan gum-calcium silicate composite beads for glimepiride delivery. Int J Biol Macromol. 2018;107:604–14.

    Article  CAS  PubMed  Google Scholar 

  36. Ma Y, Zheng Y, Zeng X, Jiang L, Chen H, Liu R, Huang L, Mei L. Novel docetaxel-loaded nanoparticles based on PCL-Tween 80 copolymer for cancer treatment. Int J Nanomed. 2011;6:2679–88.

    CAS  Google Scholar 

  37. Bharali DJ, et al. Cross-linked polyvinylpyrrolidone nanoparticles: a potential carrier for hydrophilic drugs. J Colloid Interface Sci. 2003;258(2):415–23.

    Article  CAS  PubMed  Google Scholar 

  38. Shalviri A, et al. Design of pH-responsive nanoparticles of terpolymer of poly (methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin. Colloids Surf, B. 2013;101:405–13.

    Article  CAS  Google Scholar 

  39. Khan MI, et al. Development and in vitro/ex vivo evaluation of lecithin-based deformable transfersomes and transfersome-based gels for combined dermal delivery of meloxicam and dexamethasone. Biomed Res Int. 2022;2022:8170318.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yu X, Liu T, Lin R. Development and characterization of a glimepiride-loaded gelatin-coated mesoporous hollow silica nanoparticle formulation and evaluation of its hypoglycemic effect on type-2 diabetes model rats. Assay Drug Dev Technol. 2020;18(8):369–78.

    Article  CAS  PubMed  Google Scholar 

  41. Jackson CL, McKenna GB. The melting behavior of organic materials confined in porous solids. J Chem Phys. 1990;93(12):9002–11.

    Article  CAS  Google Scholar 

  42. Choi JE, et al. Effects of different physicochemical characteristics and supersaturation principle of solidified SNEDDS and surface-modified microspheres on the bioavailability of carvedilol. Int J Pharm. 2021;597.

    Article  CAS  PubMed  Google Scholar 

  43. Tam JM, et al. Amorphous cyclosporin nanodispersions for enhanced pulmonary deposition and dissolution. J Pharm Sci. 2008;97(11):4915–33.

    Article  CAS  PubMed  Google Scholar 

  44. Li X, et al. Encapsulation efficiency and oral delivery stability of chitosan–liposome-encapsulated immunoglobulin Y. J Food Sci. 2022;87(4):1708–20.

    Article  CAS  PubMed  Google Scholar 

  45. Anwar M, et al. Formulation and evaluation of interpenetrating network of xanthan gum and polyvinylpyrrolidone as a hydrophilic matrix for controlled drug delivery system. Polym Bull. 2021;78:59–80.

    Article  CAS  Google Scholar 

  46. Hanif R, Khan MI, Madni A, Akhtar MF, Sohail MF, Saleem A, Rehman M, Usmani SJ, Khan A, Masood A. Polyoxyethylene lauryl ether (Brij-35) and poloxamer 407–based non-ionic surfactant vesicles for dissolution enhancement of tacrolimus. J Pharm Innov. 2023;18:1487–99.

    Article  Google Scholar 

  47. Rasul A, et al. In vitro characterization and release studies of combined nonionic surfactant-based vesicles for the prolonged delivery of an immunosuppressant model drug. Int J Nanomed. 2020;15:7937.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to Riphah International University, Lahore Pakistan, for providing a maximum of research facilities to conduct a major part of this research. The authors extend their gratitude to Mega Pharmaceuticals Pvt. Ltd. Lahore Pakistan, Riphah International University, Lahore, LCW University, Lahore, Pakistan, and Quaid-e Azam University, Islamabad, Pakistan, for facilitation the research process.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by ZI, MIK, MFS, MFA, MNQ, MKJ, FA, B-t-A, MA, AK, and FA. The first draft of the manuscript was written by ZI, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Muhammad Imran Khan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Irfan, Z., Khan, M.I., Sohail, M.F. et al. Development and Characterization of Glimepiride-Loaded Polymeric Nanoparticles: Formulation Design and Evaluation. J Pharm Innov 19, 5 (2024). https://doi.org/10.1007/s12247-024-09812-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12247-024-09812-2

Keywords

Navigation