Skip to main content
Log in

Investigation of (Ti,W)C Phase Evolution during Spark Plasma Sintering of Nanoscale Tungsten and Titanium Carbides Powders at Low Temperatures

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

Low-temperature synthesis of ceramics and cemented carbides based on plasma-chemical tungsten and titanium carbides nanopowders and micron-sized commercial titanium carbide powders has been investigated. Compact samples were prepared by spark plasma sintering (SPS), which consists in high-speed heating of powders at a rate of 50°C/min in vacuum under pressure up to 70 MPa. Compact samples with high density were obtained in a narrow temperature region above 1000. Phase evolution of double carbide having FCC lattice is considered based upon XRD data. A model for calculating the theoretical density of this phase is proposed, the calculated values agree with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. H. M. Ortner, P. Ettmayer, and H. Kolaska, “The history of the technological progress of hardmetals,” Int. J. Refract. Met. Hard Mater. 44, 148–159 (2014).

    Article  CAS  Google Scholar 

  2. H. E. Exner and J. Gurland, “A review of parameters influencing some mechanical properties of tungsten carbide–cobalt alloys,” Powder Metall. 13 (25), 13–31 (1970).

    Article  CAS  Google Scholar 

  3. X. Wang, K. S. Hwang, M. Koopman, Z. Z. Fang, and L. Zhang, “Mechanical properties and wear resistance of functionally graded WC–Co,” Int. J. Refract. Met. Hard Mater. 36, 46–51 (2013).

    Article  Google Scholar 

  4. G. E. Spriggs, “A history of fine grained hardmetal,” Int. J. Refract. Met. Hard Mater. 13 (5), 241–255 (1995).

    Article  CAS  Google Scholar 

  5. J. Pötshke, T. Säuberlich, A. Vornberger, and J. A. Meese-Marktscheffel, “Solid state sintered nanoscaled hardmetals and their properties,” Int. J. Refract. Met. Hard Mater. 72, 45–50 (2018).

    Article  Google Scholar 

  6. Z. N. Farhat, “Microstructural characterization of WC–TiC–Co cutting tools during high-speed machining of P20 mold steel,” Mater. Charact. 51 (2–3), 117–130 (2003).

    Article  CAS  Google Scholar 

  7. J. Xiong, Z. Guo, M. Yang, W. Wan, and G. Dong, “Tool life and wear of WC–TiC–Co ultrafine cemented carbide during dry cutting of AISI H13 steel,” Ceram. Int. 39 (1), 337–346 (2013).

    Article  CAS  Google Scholar 

  8. G. S. Upadhyaya, Nature and Properties of Refractory Carbides (Nova Science Publishers, New York, 1996).

    Google Scholar 

  9. E. M. Trent, “Cutting tool materials, carbides,” Metal Cutting, 3rd ed. (Elsevier Ltd., 1991), Chap. 7, pp. 127–170.

    Google Scholar 

  10. J. García, V. C. Ciprés, A. Blomqvist, and B. Kaplan, “Cemented carbide microstructures: A review,” Int. J. Refract. Met. Hard Mater. 80, 40–68 (2019).

    Article  Google Scholar 

  11. V. S. Panov and A. M. Chuvilin, Technology and Properties of Sintered Hard Alloys and Products Made of Them, (MISIS, M., 2001).

  12. Z. Qiao, J. Räthel, L.-M. Berger, and M. Herrmann, “Investigation of binderless WC–TiC–Cr3C2 hard materials prepared by spark plasma sintering (SPS),” Int. J. Refract. Met. Hard Mater. 38, 7–14 (2013).

    Article  CAS  Google Scholar 

  13. L. Zhang, Y. Liang, J.-H Gu., X.-Y. Yan, X. Li, P. Yu, and L. Wang, “Synthesis of nano (Ti,W)C powder with preferred orientation and twin boundary structure,” Adv. Powder Technol. 33 (5), 103550 (2022).

    Article  CAS  Google Scholar 

  14. Z. Zhang, Y. Xu, M. Yi, S. Jiang, Z. Chen, G. Xiao, J. Zhang, H. Chen, and C. Xu, “Synthesis and characterization of extremely hard and strong (W,Ti,Ta)C cermet by spark plasma sintering,” Int. J. Refract. Met. Hard Mater. 105, 105831 (2022).

    Article  CAS  Google Scholar 

  15. Z. Wang, J. Wang, Y. Xu, M. Yi, G. Xiao, Z. Chen, J. Zhang, H. Chen, and C. Xu, “Microstructure and mechanical properties of (Ti,W)C cermets prepared by ultrafast spark plasma sintering,” Ceram. Int. 48 (11), 15613–15621 (2022).

    Article  CAS  Google Scholar 

  16. A. Petersson, “Sintering shrinkage of WC–Co and WC–(Ti,W)C–Co materials with different carbon contents,” Int. J. Refract. Met. Hard Mater. 22 (4–5), 211–217 (2004).

    Article  CAS  Google Scholar 

  17. B.-K. Yoon, B.-A. Lee, and S.-J. L. Kang, “Growth behavior of rounded (Ti,W)C and faceted WC grains in a Co matrix during liquid phase sintering,” Acta Mater. 53 (17), 4677–4685 (2005).

  18. I. Yu. Buravlev, O. O. Shichalin, E. K. Papynov, A. V. Golub, E. A. Gridasova, A. A. Buravleva, V. Yu. Yagofarov, M. I. Dvornik, A. N. Fedorets, V. P. Reva, A. A. Yudakov, and V. I. Sergienko, “WC–5TiC–10Co hard metal alloy fabrication via mechanochemical and SPS techniques,” Int. J. Refract. Met. Hard Mater. 94, 105385 (2021).

    Article  CAS  Google Scholar 

  19. G. V. Samsonov, V. K. Vitryanyuk, and F. I. Chaplygin, Tungsten Carbides (Naukova dumka, Kiev, 1974).

    Google Scholar 

  20. A. Nino, Y. Izu, T. Sekine, S. Sugiyama, and H. Taimatsu, “Effects of TaC and TiC addition on the microstructures and mechanical properties of binderless WC,” Int. J. Refract. Met. Hard Mater. 82, 167–173 (2019).

    Article  CAS  Google Scholar 

  21. E. A. Lantscev, N. V. Malekhonova, Yu. V. Tsvetkov, Yu. V. Blagoveshchensky, V. N. Chuvildeev, A. V. Nokhrin, M. S. Boldin, P. V. Andreev, K. E. Smetanina, and N. V. Isaeva, “An investigation of the peculiarities of high-speed sintering of plasma chemically synthesized tungsten carbide nanopowders with increased oxygen content,” Physical Chemistry of Materials Processing, No. 6, 23–39 (2020).

  22. V. N. Chuvil’deev, Yu. V. Blagoveshchensky, N. V. Saharov, M. S. Boldin, A. V. Nokhrin, N. V. Isaeva, S. V. Shotin, Yu. G. Lopatin, and E. S. Smirnova, “Production and investigating of ultrafine-grained tungsten carbide with high hardness and crack resistance,” Russ. Acad. Sci. Rep. 463 (3), 285–289 (2015).

    Google Scholar 

  23. Yu. V. Blagoveshchensky, N. V. Isaeva, N. V. Blagoveshchenskaya, Yu. I. Mel’nik, V. N. Chuvil’deev, A. V. Nokhrin, N. V. Saharov, M. S. Boldin, E. S. Smirnova, S. V. Shotin, Yu. V. Levinskij, and G. M. Vol’dman, “Methods of compacting nanostructured tungsten-cobalt alloys from nanopowders obtained by plasma-chemical synthesis,” Perspect. Mater., No. 1, 5–21 (2015).

  24. E. A. Lantsev, V. N. Chuvil’deev, A. V. Nokhrin, M. S. Boldin, Yu. V. Tsvetkov, Yu. V. Blagoveshchensky, N. V. Isaeva, P. V. Andreev, and K. E. Smetanina, “Investigation of SPS kinetics of ultrafine-grained WC–10% Co hard alloys,” Phys. Chem. Mater. Process., No. 6, 36–51 (2019).

  25. Yu. V. Blagoveshchensky, N. V. Isaeva, E. A. Lantsev, M. S. Boldin, V. N. Chuvil’deev, A. V. Nokhrin, A. A. Murashov, P. V. Andreev, K. E. Smetanina, N. V. Malekhonova, and A. V. Terent’ev, “Investigation of electropulse plasma sintering kinetics for WC–10% Co ultrafine-grained hard alloys,” Perspect. Mater., No. 8, 73–86 (2020).

  26. N. V. Isaeva, Y. V. Blagoveshchenskii, N. V. Blagoveshchenskaya, Y. I. Mel’nik, A. V. Samokhin, N. V. Alekseev, and A. G. Astashov, Russ. J. Non-Ferrour. Met. 55 (6), 585 (2014).

    Google Scholar 

  27. K. E. Smetanina, P. V. Andreev, E. A. Lantsev, M. M. Vostokov, and N. V. Malekhonova, “X-ray diffraction layer-by-layer analysis of tungsten carbide-based hard alloys,” Fact. Lab. Diagn. Mater. 86 (8), 38–42 (2020).

    Article  CAS  Google Scholar 

  28. E. A. Olevsky and D. V. Dudina, Field-Assisted Sintering (Switzerland, Springer Ch., 2018).

    Book  Google Scholar 

  29. E. A. Lantsev, N. V. Malekhonova, V. N. Chuvil’deev, A. V. Nokhrin, Yu. V. Tsvetkov, Yu. V. Blagoveshchensky, M. S. Boldin, P. V. Andreev, K. E. Smetanina, and N. V. Isaeva, “Study of high-speed sintering of ne-grained hard alloys based on tungsten carbide with ultralow cobalt content. I. Pure tungsten carbide,” Phys. Chem. Mater. Process., No. 6, 35–53 (2021).

  30. N. Engel, “Metallic lattices considered as electron concentration phases,” Am. Soc. Met. Trans. Quart. 57 (3), 610–619 (1964).

    CAS  Google Scholar 

  31. Y. Guérin and C. H. De Novion, “Structure crystalline de V8C7,” Rev. Int. Hautes Tempér. et Réfract. 8, 311–314 (1971).

    Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Terent’ev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terent’ev, A.V., Blagoveshchenskij, Y.V., Isaeva, N.V. et al. Investigation of (Ti,W)C Phase Evolution during Spark Plasma Sintering of Nanoscale Tungsten and Titanium Carbides Powders at Low Temperatures. Russ. Metall. 2023, 1319–1330 (2023). https://doi.org/10.1134/S0036029523090161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523090161

Keywords:

Navigation