Skip to main content
Log in

Structure and Mechanical Properties of Deformed Mg–Sm–Tb–Zr Alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The structure, aging kinetics, and mechanical properties of new Mg–Sm–Tb–Zr alloys, which are prepared by hot extrusion and differ in the content of rare-earth metals and their ratio, are studied. Samarium and terbium are found to differently affect recrystallization during deformation and the character of strengthening, which occurs in the course of additional aging for different times and results from the decomposition of a magnesium-based solid solution. The mechanical properties of the alloys subjected to hot extrusion and aging, in particular, upon heating in the temperature range up to 300°C, are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. B. Liu, J. Yang, X. Zhang, Q. Yang, J. Zhang, and X. Li, “Development and application of magnesium alloy parts for automotive OEMs: a review,” J. Magnes. Alloys 11 (1), 15–47 (2023). https://doi.org/10.1016/j.jma.2022.12.015

    Article  CAS  Google Scholar 

  2. E. F. Volkova, M. V. Akinina, I. V. Mostyaev, V. A. Duyunova, and A. A. Alikhanyan, “New studies in the field of alloying and deformation of modern magnesium alloys. Review,” Russ. Metall. (Metally), No. 3, 191–199 (2022). https://doi.org/10.1134/S0036029522030120

  3. S. You, Y. Huang, K. U. Kainer, and N. Hort, “Recent research and developments on wrought magnesium alloys,” J. Magnes. Alloys 5, 239–253 (2017). https://doi.org/10.1016/j.jma.2017.09.001

    Article  CAS  Google Scholar 

  4. B. L. Mordike and T. Ebert, “Magnesium: properties-applications-potential,” Mater. Sci. Eng. A 302, 37–45 (2001). https://doi.org/10.1016/S0921-5093(00)01351-4

    Article  Google Scholar 

  5. L. L. Rokhlin, Magnesium Alloys Containing Rare-Earth Metals: Structure and Properties, Ser. Advances in Metallic Alloys (Taylor and Francis, London, 2003), Vol. 3.

    Book  Google Scholar 

  6. X. Chen, Q. Li, J. Yan, and P. Chen, “Microstructure and high temperature mechanical properties of the Mg–Gd–Y(–Nd)–Zr alloy,” J. Mater. Res. Technol. 24, 866–878 (2023). https://doi.org/10.1016/j.jmrt.2023.03.065

    Article  CAS  Google Scholar 

  7. Q. Li, Y. Zhou, and P. Chen, “Creep behavior and creep mechanism of Mg–Gd–Y–Sm–Zr alloy,” Vacuum 212, 112009 (2023). https://doi.org/10.1016/j.vacuum.2023.112009

    Article  CAS  Google Scholar 

  8. C. Tang, L. Cui, H. Jiang, W. Liu, J. Li, X. Liu, and H. Li, “The role of initial grain size on bimodal grained microstructure and mechanical properties of an extruded Mg–Gd–Y–Nd–Zr alloy,” J. Mater. Res. Technol. 23, 4663–4677 (2023). https://doi.org/10.1016/j.jmrt.2023.02.056

    Article  CAS  Google Scholar 

  9. H. Pang, Q. Li, X. Chen, P. Chen, X. Li, and J. Tan, “Hot deformation behavior and microstructure evolution of Mg–Gd–Y(–Sm)–Zr alloys,” J. Alloys Compd. 920, 165937 (2022). https://doi.org/10.1016/j.jallcom.2022.165937

    Article  CAS  Google Scholar 

  10. X. Ren, X. An, S. Ni, Y. Huang, and M. Song, “Formation of nanocrystalline grain in an Mg–Gd–Y–Zr alloy processed by high-pressure torsion,” Mater. Charact. 191, 112088 (2022). https://doi.org/10.1016/j.matchar.2022.112088

    Article  CAS  Google Scholar 

  11. S. Zhao, Y. Xu, C. Geng, X. Lin, Q. Tang, and Y. Dong, “High temperature mechanical properties and strain hardening mechanism of directionally solidified Mg–Gd–Y alloy,” Mater. Sci. Eng. A 833, 142337 (2022). https://doi.org/10.1016/j.msea.2021.142337

    Article  CAS  Google Scholar 

  12. L. L. Rokhlin, T. V. Dobatkina, I. E. Tarytina, E. A. Luk’yanova, and O. A. Ovchinnikova, “Properties of the light structural of an IMV7-1 alloy of the Mg–Y–Gd–Zr system in adding cerium group rare-earth metals, samarium neodymium, and lanthanum,” Perspekt. Mater., No. 10, 5–13 (2022). https://doi.org/10.30791/1028-978X-2022-10-5-13

  13. J. Li, Z. Dong, X. Yi, D. Wu, and R. Chen, “Twin evolution in cast Mg–Gd–Y alloys and its dependence on aging heat treatment,” J. Magnes. Alloys, 11 (7), 2285–2298 (2021). https://doi.org/10.1016/j.jma.2021.09.023

    Article  CAS  Google Scholar 

  14. Y. Wu, Y. Jia, S. Zhang, Y. Liu, H. Xiong, and G. Chen, “Flow softening and dynamic recrystallization behavior of a Mg–Gd–Y–Nd–Zr alloy under elevated temperature compressions,” J. Magnes. Alloys. 11 (8), 2891–2900 (2023). https://doi.org/10.1016/j.jma.2021.11.009

    Article  CAS  Google Scholar 

  15. L. L. Rokhlin, T. V. Dobatkina, I. E. Tarytina, E. A. Luk’yanova, and O. A. Ovchinnikova, “Effect of samarium on the strength properties of Mg–Y–Gd–Zr alloys,” Russ. Metall. (Metally), No. 3, 267–271 (2021). https://doi.org/10.1134/S0036029521030125

  16. Y. Li, C. Qu, J. Wang, and R. Xu, “Exceptional aging hardening behaviour of nanocrystalline Mg–Y–Nd–Gd–Zr alloy prepared by high pressure torsion,” J. Alloys Compd. 813, 152123 (2020). https://doi.org/10.1016/j.jallcom.2019.152123

    Article  CAS  Google Scholar 

  17. B. Wang, B. Tang, C. You, Y. Wan, Y. Gao, Z. Chen, L. Lu, C. Liu, and J. Wang, “Dislocation arrays, precipitate bands and free zones in forged Mg–Gd–Y–Zr alloy”, Mater. Sci. Eng. A 775, 138789 (2020). https://doi.org/10.1016/j.msea.2019.138789

    Article  CAS  Google Scholar 

  18. S. Yu, Y. Wan, C. Liu, and J. Wang, “Age-hardening and age-softening in nanocrystalline Mg–Gd–Y–Zr alloy,” Mater. Charact. 156, 109841 (2019). https://doi.org/10.1016/j.matchar.2019.109841

    Article  CAS  Google Scholar 

  19. L. L. Rokhlin, E. A. Luk’yanova, T. V. Dobatkina, I. E. Tarytina, O. A. Ovchinnikova, and D. R. Temralieva, “Effect of cerium and erbium on the aging kinetics and the properties of an IMV7-1 alloy of the Mg–Y–Gd–Zr system,” Russ. Metall. (Metally), No. 1, 8–13 (2019). https://doi.org/10.1134/S0036029519010105

  20. S. V. Dobatkin, L. L. Rokhlin, E. A. Lukyanova, T. V. Dobatkina, N. Y. Tabachkova, and M. Y. Murashkin, “Structure and mechanical properties of the Mg–Y–Gd–Zr alloy after high pressure torsion,” Mater. Sci. Eng. A 667, 217–223 (2016). https://doi.org/10.1016/j.msea.2016.05.003

    Article  CAS  Google Scholar 

  21. N. Liu, Z. Zhang, L. Peng, and W. Ding, “Microstructure evolution and mechanical properties of Mg–Gd–Sm–Zr alloys,” Mater. Sci. Eng. A 627, 223–229 (2015). https://doi.org/10.1016/j.msea.2014.12.114

    Article  CAS  Google Scholar 

  22. E. A. Lukyanova, L. L. Rokhlin, T. V. Dobatkina, N. I. Nikitina, and N. Y. Tabachkova “Reversion after ageing in an Mg–Y–Gd–Zr alloy,” J. Alloys Compd. 635, 173–179 (2015). https://doi.org/10.1016/j.jallcom.2015.02.115

    Article  CAS  Google Scholar 

  23. H. Okamoto, “Mg–Sm (magnesium–samarium),” J. Phase Equilib. Diff. 30 (3), 299 (2009). https://doi.org/10.1007/s11669-009-9510-5

    Article  CAS  Google Scholar 

  24. R. W. Cahn, Binary Alloy Phase Diagrams, 2nd ed., Ed. by T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, Adv. Mater. 3, 628–629 (1991). https://doi.org/10.1002/adma.19910031215

  25. L. L. Rokhlin, T. V. Dobatkina, E. A. Luk’yanova, I. G. Korol’kova, and A. S. Polikanova, “Phase equilibria in solid Mg-rich Mg–Sm–Tb alloys,” Russ. Metall. (Metally), No. 7, 663–668 (2010). https://doi.org/10.1134/S0036029510070141

  26. E. A. Luk’yanova, L. L. Rokhlin, T. V. Dobatkina, and I. G. Korol’kova, “Liquidus surface of the Mg–Sm–Tb phase diagram,” Russ. Metall. (Metally), No. 5, 484–490 (2011). https://doi.org/10.1134/S0036029511050077

  27. E. A. Luk’yanova, L. L. Rokhlin, T. V. Dobatkina, and N. Yu. Tabachkova, “Study of the decomposition of the magnesium-based solid solutions in Mg–Sm–Tb alloys,” Phys. Met. Metallogr. 114 (7), 604–615 (2013). https://doi.org/10.1134/S0031918X13050049

    Article  Google Scholar 

  28. M. Yuan, C. He, Z. Dong, B. Jiang, B. Song, N. Guo, T. Liu, S. Guo, and F. Pan, “Effect of Sm addition on the microstructure and mechanical properties of Mg–xSm–0.4Zr alloys,” J. Mater. Res. Technol. 23, 4814–4827 (2023). https://doi.org/10.1016/j.jmrt.2023.02.114

    Article  CAS  Google Scholar 

  29. Q. Wang, D. Li, J.J. Blandin, M. Suqry, P. Donnadieu, and W. Ding, “Microstructure and creep behavior of the extruded Mg–4Y–4Sm–0.5Zr alloy,” Mater. Sci. Eng. A 516 (1–2), 189–192 (2009). https://doi.org/10.1016/j.msea.2009.03.084

  30. H. Pang, J. Bao, Q. Li, X. Chen, P. Chen, X. Li, and J. Tan, “Effect of Sm on microstructures and mechanical properties of Mg–Gd(–Sm)–Zr alloys by hot extrusion and aging treatment,” J. Mater. Res. Technol. 19, 3877–3893 (2022). https://doi.org/10.1016/j.jmrt.2022.06.128

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed in terms of state assignment no. 075-01176-23-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Lukyanova.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by N. Kolchugina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanova, E.A., Rokhlin, L.L., Dobatkina, T.V. et al. Structure and Mechanical Properties of Deformed Mg–Sm–Tb–Zr Alloys. Russ. Metall. 2023, 1226–1232 (2023). https://doi.org/10.1134/S0036029523090082

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029523090082

Keywords:

Navigation