Skip to main content
Log in

Childhood-related neural genotype–phenotype in ATP1A3 mutations: comprehensive analysis

  • Research Article
  • Published:
Genes & Genomics Aims and scope Submit manuscript

Abstract

Background

ATP1A3 is a gene that encodes the ATPase Na + /K + transporting subunit alpha-3 isoenzyme that is widely expressed in GABAergic neurons. It maintains metabolic balance and neurotransmitter movement. These pathways are essential for the proper functioning of the nervous system. A mutation in the ATP1A3 gene demonstrates remarkable genotype–phenotype heterogeneity.

Objectives

To provide insight into patients with ATP1A3 mutation.

Material and methods

These cases were identified using next generation sequencing. The patients' clinical and genetic data were retrieved. Detailed revision of the literature was conducted to illustrate and compare findings. The clinical, genetical, neuroimaging, and electrophysiological data of all pediatric patients were extracted.

Results

The study included 14 females and 12 males in addition to two novel females cases. Their mean current age is 6.3 ± 4.24 years. There were 11.54% preterm pregnancies with 5 cases reporting pregnancy complications. Mean age of seizure onset was 1.07 ± 1.06 years. Seizure semiology included generalized tonic–clonic, staring spells, tonic–clonic, and others. Levetiracetam was the most frequently used Anti-seizure medication. The three most frequently reported classical symptoms included alternating hemiplegia of childhood (50%), cerebellar ataxia (50%), and optic atrophy (23.08%). Non-classical symptoms included dystonia (73.08%), paroxysmal dyskinesias (34.62%), and encephalopathy (26.92%). Developmental delay was reported among 84.62% in cognitive, 92.31% in sensorimotor, 80.77% in speech, and 76.92% in socioemotional. EEG and MRI were non-specific.

Conclusion

Our study demonstrated high heterogeneity among patients with pathogenic variants in the ATP1A3 gene. Such variation is multifactorial and can be a predisposition of wide genetic and clinical variables. Many patients shared few similarities in their genetic map including repeatedly reported de novo, heterozygous, mutations in the gene. Clinically, higher females prevalence of atypical presentation was noted. These findings are validated with prior evidence and the comprehensive analysis in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the firts author on reasonable request.

References

  • Allocco AA, Jin SC, Duy PQ, Furey CG, Zeng X, Dong W et al (2019) Recessive Inheritance of Congenital Hydrocephalus With Other Structural Brain Abnormalities Caused by Compound Heterozygous Mutations in ATP1A3. Front Cell Neurosci 26(13):425–425

    Article  Google Scholar 

  • Alyamani SA, Aldhalaan HM, Almuhaizea MA, Abukhalid MF (2023) Expanding the Allelic spectrum in ATP1A3-related disorders with 3 novel mutations and clinic features. Neurosciences (riyadh) 28(3):195–198

    Article  PubMed  Google Scholar 

  • Arystarkhova E, Haq IU, Luebbert T, Mochel F, Saunders-Pullman R, Bressman SB et al (2019) Factors in the disease severity of ATP1A3 mutations: Impairment, misfolding, and allele competition. Neurobiol Dis 1:132

    Google Scholar 

  • Ben YT, Benrhouma H, Klaa H, Rouissi A, Chaabouni M, Kraoua I et al (2018) Early Life Epilepsy and Episodic Apnea Revealing an ATP1A3 Mutation: Report of a Pediatric Case and Literature Review. Neuropediatrics 49(5):339–341

    Article  Google Scholar 

  • Berberich AJ, Ho R, Hegele RA (2018) Whole genome sequencing in the clinic: empowerment or too much information? CMAJ : Canadian Med Assoc J 190(5):E124

    Article  Google Scholar 

  • Bøttger P, Tracz Z, Heuck A, Nissen P, Romero-Ramos M, Lykke-Hartmann K (2011) Distribution of Na/K-ATPase alpha 3 isoform, a sodium-potassium P-type pump associated with rapid-onset of dystonia parkinsonism (RDP) in the adult mouse brain. J Comp Neurol 519(2):376–404

    Article  PubMed  Google Scholar 

  • Brashear A, Sweadner KJ, Cook JF, Swoboda KJ, Ozelius L. (1993) ATP1A3-Related Neurologic Disorders.

  • Calame D, Shinawi M, Cohen J, Person R, Telegrafi A, Lotze T et al (1946) Atypical phenotypes caused by the ATP1A3 variant p.P775L. Neurology 94(15):2020

    Google Scholar 

  • Chaumette B, Ferrafiat V, Ambalavanan A, Goldenberg A, Dionne-Laporte A, Spiegelman D et al (2018) Missense variants in ATP1A3 and FXYD gene family are associated with childhood-onset schizophrenia. Mol Psychiatry 25(4):821–830

    Article  PubMed  Google Scholar 

  • Chi LY, Zhao XH, Liu XW, Jiang WJ, Chi ZF, Wang SJ (2012) Alternating hemiplegia of childhood in chinese following long-term treatment with flunarizine or topiramate. Int J Neurosci 122(9):506–510

    Article  CAS  PubMed  Google Scholar 

  • Cordani R, Stagnaro M, Pisciotta L, Tiziano FD, Calevo MG, Nobili L et al (2021) Alternating Hemiplegia of Childhood: Genotype-Phenotype Correlations in a Cohort of 39 Italian Patients. Front Neurol 8(12):658451

    Article  Google Scholar 

  • Dard R, Mignot C, Durr A, Lesca G, Sanlaville D, Roze E et al (2015) Relapsing encephalopathy with cerebellar ataxia related to an ATP1A3 mutation. Dev Med Child Neurol 57(12):1183–1186

    Article  PubMed  Google Scholar 

  • Dobyns WB, Ozelius LJ, Kramer PL, Brashear A, Farlow MR, Perry TR et al (1993) Rapid-onset dystonia-parkinsonism. Neurology 43(12):2596–2596

    Article  CAS  PubMed  Google Scholar 

  • Gagnier JJ, Kienle G, Altman DG, Moher D, Sox H, Riley D et al (2013) The CARE guidelines: Consensus-based clinical case reporting guideline development. J Med Case Rep 7(1):1–6

    Article  Google Scholar 

  • Galaz-Montoya CI, Alcaraz-Estrada S, García-Montaño LA, Zenteno JC, Piña-Aguilar RE (2019) A recurrent de novo mutation in ATP1A3 gene in a Mexican patient with alternating hemiplegia of childhood detected by massively parallel sequencing. Bol Med Hosp Infant Mex 76(1):49–53

    PubMed  Google Scholar 

  • Green BN, Johnson CD, Adams A (2006) Writing narrative literature reviews for peer-reviewed journals: secrets of the trade. J Chiropr Med 5(3):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Heinzen EL, Swoboda KJ, Hitomi Y, Gurrieri F, De Vries B, Tiziano FD et al (2012) De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet 44(9):1030–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinzen EL, Arzimanoglou A, Brashear A, Clapcote SJ, Gurrieri F, Goldstein DB et al (2014) Distinct neurological disorders with ATP1A3 mutations. Lancet Neurol 13(5):503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holm TH, Lykke-Hartmann K (2016a) Insights into the pathology of the α3 Na+/K+-ATPase ion pump in neurological disorders; lessons from animal models. Front Physiol 7:197078

    Article  Google Scholar 

  • Holm TH, Lykke-Hartmann K (2016b) Insights into the Pathology of the α3 Na(+)/K(+)-ATPase Ion Pump in Neurological Disorders Lessons from Animal Models. Front Physiol. https://doi.org/10.3389/fphys.2016.00209

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishihara N, Inagaki H, Miyake M, Kawamura Y, Yoshikawa T, Kurahashi H (2019) A case of early onset life-threatening epilepsy associated with a novel ATP1A3 gene variant. Brain Dev 41(3):285–291

    Article  PubMed  Google Scholar 

  • Ishii A, Saito Y, Mitsui J, Ishiura H, Yoshimura J, Arai H et al (2013) Identification of ATP1A3 Mutations by Exome Sequencing as the Cause of Alternating Hemiplegia of Childhood in Japanese Patients. PLoS ONE 8(2):e56120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Tong L, Song S, Niu Y, Li J, Wu X et al (2018) Novel and de novo mutations in pediatric refractory epilepsy. Mol Brain 11(1):48

    Article  PubMed  PubMed Central  Google Scholar 

  • Marzin P, Mignot C, Dorison N, Dufour L, Ville D, Kaminska A et al (2018) Early-onset encephalopathy with paroxysmal movement disorders and epileptic seizures without hemiplegic attacks: About three children with novel ATP1A3 mutations. Brain Dev 40(9):768–774

    Article  PubMed  Google Scholar 

  • Moriyama K, Mizuno T, Suzuki T, Inaji M, Maehara T, Fujita A et al (2023) ATP1A3-related early childhood onset developmental and epileptic encephalopathy responding to corpus callosotomy: A case report. Brain Dev 45(1):77–81

    Article  PubMed  Google Scholar 

  • Muthaffar OY, Jan MMS, Alyazidi AS, Alotibi TK, Alsulami EA (2023) Insight into Genetic Mutations of SZT2: Is It a Syndrome? Biomedicines 11(9):2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neupert D, Abbassi P, Prange L, Flamini R, Mikati MA (2022) Progression of alternating hemiplegia of childhood-related focal epilepsy to electrical status epilepticus in sleep with reversible encephalopathy. Epileptic Disord 24(1):183–190

    Article  PubMed  Google Scholar 

  • Nicolaides P, Appleton RE, Fryer A (1996) Cerebellar ataxia, areflexia, pes cavus, optic atrophy, and sensorineural hearing loss (CAPOS): a new syndrome. J Med Genet 33(5):419–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paciorkowski AR, McDaniel SS, Jansen LA, Tully H, Tuttle E, Ghoneim DH et al (2015) Novel mutations in ATP1A3 associated with catastrophic early life epilepsy, episodic prolonged apnea, and postnatal microcephaly. Epilepsia 56(3):422–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panagiotakaki E, de Grandis E, Stagnaro M, Heinzen EL, Fons C, Sisodiya S et al (2015) Clinical profile of patients with ATP1A3 mutations in Alternating Hemiplegia of Childhood-a study of 155 patients. Orphanet J Rare Dis. https://doi.org/10.1186/s13023-015-0335-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pirahanchi Y, Jessu R, Aeddula NR (2023) Physiology. Sodium Potassium Pump, StatPearls, US

    Google Scholar 

  • Prange L, Pratt M, Herman K, Schiffmann R, Mueller DM, McLean M et al (2020) D-DEMØ, a distinct phenotype caused by ATP1A3 mutations. Neurol Genet 6(5):1

    Article  Google Scholar 

  • Rosewich H, Thiele H, Ohlenbusch A, Maschke U, Altmüller J, Frommolt P et al (2012) Heterozygous de-novo mutations in ATP1A3 in patients with alternating hemiplegia of childhood: A whole-exome sequencing gene-identification study. Lancet Neurol 11(9):764–773

    Article  CAS  PubMed  Google Scholar 

  • Sabouraud P, Riquet A, Spitz MA, Deiva K, Nevsimalova S, Mignot C et al (2019) Relapsing encephalopathy with cerebellar ataxia are caused by variants involving p.Arg756 in ATP1A3. Eur J Paediatr Neurol 23(3):448–455

    Article  PubMed  Google Scholar 

  • Salles PA, Mata IF, Brünger T, Lal D, Fernandez HH (2021) ATP1A3-Related Disorders: An Ever-Expanding Clinical Spectrum. Front Neurol 1(12):637890

    Article  Google Scholar 

  • Shattock MJ, Ottolia M, Bers DM, Blaustein MP, Boguslavskyi A, Bossuyt J et al (2015) Na+/Ca2+ exchange and Na+/K+-ATPase in the heart. J Physiol 593(Pt6):1361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suhail M (2010) Na+, K+-ATPase: Ubiquitous Multifunctional Transmembrane Protein and its Relevance to Various Pathophysiological Conditions. J Clin Med Res 2(1):1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Verret S, John S (1971) Alternating hemiplegia in childhood: a report of eight patients with complicated migraine beginning in infancy. Pediatrics 47(4):675–680

    Article  CAS  PubMed  Google Scholar 

  • Vetro A, Nielsen HN, Holm R, Hevner RF, Parrini E, Powis Z et al (2021) ATP1A2- and ATP1A3-associated early profound epileptic encephalopathy and polymicrogyria. Brain 144(5):1435–1450

    Article  PubMed  Google Scholar 

  • Viollet L, Glusman G, Murphy KJ, Newcomb TM, Reyna SP, Sweney M et al (2015) Alternating Hemiplegia of Childhood: Retrospective Genetic Study and Genotype-Phenotype Correlations in 187 Subjects from the US AHCF Registry. PLoS ONE 10(5):e0137370

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang G, Zhao Z, Yang Y, Lin L, Song C, Wang X et al (2021) Alternating Hemiplegia of Childhood Caused by ATP1A3 Mutations: A Report of Two Cases. Chin Med Sci J 36(2):150–157

    PubMed  Google Scholar 

  • Yano ST, Silver K, Young R, DeBrosse SD, Ebel RS, Swoboda KJ et al (2017) Fever-Induced Paroxysmal Weakness and Encephalopathy, a New Phenotype of ATP1A3 Mutation. Pediatr Neurol 1(73):101–105

    Article  Google Scholar 

  • Zou S, Lan YL, Gong Y, Chen Z, Xu C (2023) The role of ATP1A3 gene in epilepsy: We need to know more. Front Cell Neurosci 17:1143956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zúñiga-Ramírez C, Kramis-Hollands M, Mercado-Pimentel R, González-Usigli HA, Sáenz-Farret M, Soto-Escageda A et al (2019) Generalized Dystonia and Paroxysmal Dystonic Attacks due to a Novel ATP1A3 Variant. Tremor Other Hyperkinet Mov (n y) 9(1):5

    Google Scholar 

Download references

Acknowledgement

The authors extend their appreciation to the King Salman center For Disability Research for funding this work through Research Group no KSRG-2023-024.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran Naseer.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Ethical approval

Not applicable.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthaffar, O.Y., Alqarni, A., Shafei, J.A. et al. Childhood-related neural genotype–phenotype in ATP1A3 mutations: comprehensive analysis. Genes Genom 46, 475–487 (2024). https://doi.org/10.1007/s13258-023-01481-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13258-023-01481-8

Keywords

Navigation