Skip to main content
Log in

Investigation of structural and photoluminescence properties of nanocrystalline tin oxide thin films grown by ultrasonic spray pyrolysis method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

Nanocrystalline SnO2 thin film was, successfully, synthetized by using USP method. The structural and optical properties of SnO2 nanocrystallites were studied by using XRD, AFM, UV–Vis-NIR and PL spectroscopies. The XRD pattern confirmed the tetragonal rutile structure of SnO2 nanocrystallites with average crystalline grain size of 41 nm. AFM images show a dense surface of columnar grains with RMS surface roughness of 8.87 nm. UV–Vis-NIR measurements exposed a direct band gap of energy 3.58 eV. The PL spectrum recorded at 7 K reveals the presence of PL peaks centered in IR and Vis regions, attributed to radiative transitions via oxygen vacancies, Sn interstitials and dangling bonds. A schematic bands diagram is proposed with the approximate positions of intrinsic point defect levels in nanocrystalline SnO2 thin films. The integrated PL measurements demonstrate the good thermal stability of our sample. The unusual behavior of PL peaks and their FWHM evolution as a function of temperature indicates the thermal sensitivity of the intrinsic point defects energy levels present in band gap. Indeed, the shallower energy levels due to dangling bonds and/or oxygen vacancies are more sensitive to the temperature. However, the volume defects like Sn interstitials are thermally stable and constitute deep and stable energy levels for photoexcited electrons. Small redshifing of PL peaks is observed with the increasing of temperature. This is attributed to the reduction of oxygen vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D Liu, Y Wang, H Xu, H Zheng, T Zhang, P Zhang, F Wang, J Wu, Z Wang, Z Chen and S Li Sol. RRL. 3 1800292 (2019)

    Article  Google Scholar 

  2. S Das and V Jayaraman Progr. Mater. Sci. 66 112 (2014)

    Article  Google Scholar 

  3. M H Hwang, H Kong, J W Jeong and H Y Lee Superlattices Microstr. 141 106503 (2020)

    Article  Google Scholar 

  4. J Henry, K Mohanraja, G Sivakumar and S Umamaheswari Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 143 172 (2015)

    Article  ADS  Google Scholar 

  5. S Ebrahimi-Koodehi, F E Ghodsi and J Mazloom J. Solid State Electrochem. 22 2375 (2018)

    Article  Google Scholar 

  6. O Erken, O M Ozkendir, M Gunes, E Harputlu, C Ulutas and C Gumus Ceram. Int. 45 19086 (2019)

    Article  Google Scholar 

  7. N C Horti, M D Kamatagi, N R Patil, M N Wari and S R Inamdar Optik 169 314 (2018)

    Article  ADS  Google Scholar 

  8. L Liu, M Zengxia, A Tang, A Azarov, A Kuznetsov, Q K Xue and X Du Phys. Rev. B. 93 235305 (2016)

    Article  ADS  Google Scholar 

  9. Q-H Wu and J Li Curr. Nanosci. 6 525 (2010)

    Article  ADS  Google Scholar 

  10. F Gu, S F Wang, M K Lü, G J Zhou, D Xu and D R Yuan J. Phys. Chem. B. 108 8119 (2004)

    Article  Google Scholar 

  11. V Vasu and A Subrahmanyam Thin Solid Films 202 283 (1991)

    Article  ADS  Google Scholar 

  12. S Shanthi, H Anuratha, C Subramanian and P Ramasamy J. Cryst. Growth 194 369 (1998)

    Article  ADS  Google Scholar 

  13. H Shade and Z Smith Appl. Opt. 24 3221 (1985)

    Article  ADS  Google Scholar 

  14. S Benkara, H Ghamri, D Rechem and M Zaabat J. Mater. Res. 32 1594 (2017)

    Article  ADS  Google Scholar 

  15. S S Lekshmy, G P Daniel and K Joy Appl. Surf. Sci. 274 95 (2013)

    Article  ADS  Google Scholar 

  16. E A Davis and N F Mott Philos. Mag. 22 903 (1970)

    Article  ADS  Google Scholar 

  17. J Tauc, R Grigorovici and A Vancu Phys. Status Solidi. 15 627 (1966)

    Article  Google Scholar 

  18. J Tauc Mater. Res. Bull. 5 721 (1970)

    Article  Google Scholar 

  19. A Sharma, M Tomar and V Gupta Sens. Actuators B: Chem. 156 2 743–752 (2011)

    Article  Google Scholar 

  20. H Sefardjella, B Boudjema, A Kabir and G Schmerber Curr. Appl. Phys. 13 1971 (2013)

    Article  ADS  Google Scholar 

  21. S Sambasivam, S B Kim, J H Jeong, B C Choi, K T Lim, S S Kim and T K Song Curr. Appl. Phys. 10 1383 (2010)

    Article  ADS  Google Scholar 

  22. S Sambasivam, P S Maram, C V V M Gopi and I M Obaidat Opt. –Int. J. Light Electron Opt. 202 163596 (2020)

    Article  Google Scholar 

  23. C Monty J. de Phys. Colloq. 39 C2-74 (1978)

    Article  Google Scholar 

  24. S Chacko J. Phys. D: Appl. Phys. 39 4540 (2006)

    Article  ADS  Google Scholar 

  25. Q Ou, T Matsuda, M Mesko, A Ogino and M Nagatsu Jpn. J. Appl. Phys. 47 389 (2008)

    Article  ADS  Google Scholar 

  26. N M A Hadia, S V Ryabtsev, E P Domashevskaya and P V Seredin Eur. Phys. J. Appl. Phys. 48 10603 (2009)

    Article  ADS  Google Scholar 

  27. D Cai, Y Su, Y Chen, J Jiang, Z He and L Chen Mater. Lett. 59 1984 (2005)

    Article  Google Scholar 

  28. E S Duraia, Z A Mansorov and S Tokmolden Phys. B: Condens. Matter. 404 21 3952–3956 (2009)

    Article  ADS  Google Scholar 

  29. K Vanheusden, W L Warren, C H Seager, D R Tallant, J A Voigt and B E Gnade J. Appl. Phys. 79 7983 (1996)

    Article  ADS  Google Scholar 

  30. T W Kim, D U Lee and Y S Yoon J. Appl. Phys. 88 3759 (2000)

    Article  ADS  Google Scholar 

  31. K L Chopra, S Majorand and D K Pandya Thin Solid Films 102 1 (1983)

    Article  ADS  Google Scholar 

  32. F Schipani, M A Ponce, E Joanni, F J Williams and C M Aldao J. Appl. Phys. 116 194502 (2014)

    Article  Google Scholar 

  33. Y P Varshni Physica 34 149 (1967)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatiha Besahraoui.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Besahraoui, F., Guezzoul, M., Chebbah, K. et al. Investigation of structural and photoluminescence properties of nanocrystalline tin oxide thin films grown by ultrasonic spray pyrolysis method. Indian J Phys (2024). https://doi.org/10.1007/s12648-023-03064-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-023-03064-5

Keywords

Navigation