Skip to main content
Log in

Ab initio prediction of the structural, optoelectronic and thermoelectric properties of double half-Heusler (DHH) ScXRh2Bi2 (X = Nb, Ta) alloys DFT study results

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The physical performance of the double half-Heusler compounds, namely ScNbRh2Bi2 and ScTaRh2Bi2 based on structural, electronic, optical and thermoelectric properties, has been investigated. The information gathered showed that both substances are stable nonmagnetic alloys. The electronic characteristics of ScNbRh2Bi2 and ScTaRh2Bi2 exhibit direct energy band gaps of 0.629 and 0.903 eV, respectively. The optical properties reveal a high absorption coefficient that increases steadily over the visible light spectrum. These substances also have high visible-spectrum reflectivity, making them perfect for optoelectronic uses like solar and photovoltaic cells. Furthermore, these materials are an extraordinary possibility for thermoelectric applications because of their high figure of legitimacy and Seebeck coefficient (S) values. However, there are no hypothetical or exploratory data for these compounds to compare with what we reported. We think that the ongoing review will be beneficial for upcoming experimenters trying to tentatively assemble these synthetic compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R Freer and A V Powell J Mater Chem 8 441 (2020)

    Google Scholar 

  2. S Twaha and J Zhu Rev 65 698 (2016)

    Google Scholar 

  3. W G Zeier, J Schmitt, G Hautier, U Aydemir, Z M Gibbs, C Felser and G J Nat Rev Mater 6 1 (2016)

    Google Scholar 

  4. T Zhu, Y Liu, C Fu and J P Heremans Adv Mater 29 1605884 (2017)

    Article  Google Scholar 

  5. J Mao, Z Liu, J Zhou, H Zhu, Q Zhang, G Chen and Z Ren Adv.Phy. 67 (2018)

  6. T Graf, C Felser and S S Parkin Prog.Solid. State Chem. 39 (2011)

  7. S Anand, M Wood, Y Xia, C Wolverton and G J Snyder Joule 3 1226 (2019)

    Article  Google Scholar 

  8. R Yan, R Xie, W Xie, C Shen, W Li, B Balke, S Yoon, H Zhang and A Weidenkaff ACS Appl Mater Interfaces 13 34533 (2021)

    Article  Google Scholar 

  9. H Zhu et al. Nat Commun 9 2497 (2018)

    Article  ADS  Google Scholar 

  10. A H Romero and E K U Gross Rev B 91 214310 (2015)

    Article  Google Scholar 

  11. G K Madsen and D J Singh Phys Commun 175 67 (2006)

    Article  ADS  Google Scholar 

  12. M Boudjelal, A Belfedal, B Bouadjemi, T Lantri, R Bentata, M Batouche and R Khenata Chin J Phys 61 155 (2019)

    Article  Google Scholar 

  13. W Kohn and L S Sham PhysRev.140.1133

  14. C A Ullrich Rev Lett 87 093001 (2001)

    Article  ADS  Google Scholar 

  15. P Blaha and K Schwarz Phys Commun 59 399 (1990)

    Article  ADS  Google Scholar 

  16. K Schwarz and P Blaha Comput Mater Sci 28 259 (2003)

    Article  Google Scholar 

  17. P Blaha, K Schwarz, F Tran and R Laskowski J Chem Phys 152 1 (2020)

    Article  Google Scholar 

  18. J P Perdew Rev Lett 77 3865 (1996)

    Article  ADS  Google Scholar 

  19. F Tran and P Blaha Phys Rev Lett 102 1 (2009)

    Google Scholar 

  20. V I Anisimov and O Gunnarsson Phys Rev B 43 7570 (1991)

    Article  ADS  Google Scholar 

  21. M Y Raïâ, R Masrour, M Hamedoun, J Kharbach and A Rezzouk Today Commun 36 106799 (2023)

    Google Scholar 

  22. S Feng Mater Sci 82 45 (2014)

    Google Scholar 

  23. G Uğur, A Kushwaha, M Güler, Z Charifi and Ş Uğur Sci Semi Pro 123 105531 (2021)

    Google Scholar 

  24. F D Murnaghan Proc Nat Acad Sci 30 244 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  25. M Roknuzzaman, K Ostrikov and H Wang Rep 7 14025 (2017)

    Google Scholar 

  26. T Krishnamoorthy, H Ding, C Yan, W L Leong, T Baikie and Z Zhang Mathews J Mater Chem A 3 23829 (2015)

    Article  Google Scholar 

  27. M G Brik Solid State Commun 151 1733 (2011)

    Article  ADS  Google Scholar 

  28. S Korbel J Mater Chem C 4 3157 (2016)

    Article  Google Scholar 

  29. M Houari, B Bouadjemi, S Haid, M Matougui, T Lantri and Z Aziz J Phys 94 455 (2020)

    Google Scholar 

  30. A Yakoubi, O Baraka and B Bouhafs Results Phy 2 58 (2012)

    Article  ADS  Google Scholar 

  31. M Diaf, H Righi and H Rached J Elect Mater 52 6514 (2023)

    Article  ADS  Google Scholar 

  32. W Sun, S T Dacek, S P Ong, G Hautier, A Jain, W D Richards, A C Gamst, K A Persson and G Ceder Sci Adv 2 e1600225 (2016)

    Article  ADS  Google Scholar 

  33. S Faiza-Rubab, S Naseem, S M Alay-e-Abbas and M Zulfiqar Chem Chem Phys 23 19472 (2021)

    Article  Google Scholar 

  34. S Kirklin, J E Saal, B Meredig, A Thompson and J W Doak Mater 1 1 (2015)

    Google Scholar 

  35. B Sahli, H Bouafia, B Abidri, A Bouaza and A Akriche J Mod Phys B 30 1650230 (2016)

    Article  ADS  Google Scholar 

  36. M Boudjelal, R Bentata, B Bouadjemi, A Belfedal, T Seddik, T Lantri and M Batouche J Phys 96 1381 (2022)

    Google Scholar 

  37. R D Kronig Josa 12 547 (1926)

    Article  ADS  Google Scholar 

  38. A Meziani, D Heciri and H Belkhir Phys B Cond Matter 406 3646 (2011)

    Article  ADS  Google Scholar 

  39. H J Monkhorst and J D Pack Phys Rev B 13 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  40. F Peng, H Fu and X Yang Physica B: Cond Matter 403 2851 (2008)

    Article  ADS  Google Scholar 

  41. R Singh Mater Sci 213 111649 (2018)

    ADS  Google Scholar 

  42. S Ozen, F Iyikanat, M Ozcan, GE. Tekneci, I Eren, Y Sozen and H Sahin Comp.Cond. Matter. 23 1(2020)

  43. P Entel et al. Energy Technol 6 1478 (2018)

    Article  Google Scholar 

  44. M Boudjelal et al. Quant Elect 54 716 (2022)

    Article  Google Scholar 

  45. L J Wang, A Kuzmich and A Dogariu Nature 406 277 (2000)

    Article  ADS  Google Scholar 

  46. M A Ali, N Alam, Meena, S Ali, S A Dar, A Khan, G Murtaza and A Laref Int. J. Quant. Chem. 120 (2020)

  47. K Bouferrache, Z Charifi and H Baaziz Sci Technol 35 095013 (2020)

    ADS  Google Scholar 

  48. R Sharma, S A Dar and A K Mishra J Alloys Compd 791 983 (2019)

    Article  Google Scholar 

  49. A T Petit and P L Dulong Ann Chim Phys 10 395 (1819)

    Google Scholar 

  50. S A Khandy and J D Chai J Magn Magn Mater 487 165289 (2019)

    Article  Google Scholar 

  51. S A Khandy and J D Chai J Phys Chem Solids 154 110098 (2021)

    Article  Google Scholar 

  52. S A Khandy and J D Chai J Alloy compd 850 156615 (2021)

    Article  Google Scholar 

  53. S A Khandy and J D Chai Sci Report 11 20756 (2021)

    Article  ADS  Google Scholar 

  54. R Nuwayhid Energy 28 205 (2003)

    Google Scholar 

  55. O Rabina Phys Lett 79 81 (2001)

    Google Scholar 

  56. S Krishnaveni, M Sundareswari, P Deshmukh and J Roberts Mater Res 31 1306 (2016)

    Article  ADS  Google Scholar 

  57. M J Graf and S Yip Rev B 53 15147 (1996)

    Article  Google Scholar 

  58. J He et al. Phys Rev Lett 117 046602 (2016)

    Article  ADS  Google Scholar 

  59. A Bejan and A D Kraus Heat Transfer Handbook (NewYork: Wiley) vol. 1 (2003)

  60. S A Khandy and J D Chai J Appl Phys 127 1651021 (2020)

    Article  Google Scholar 

  61. S Saad Essaoud, A Bouhemadou, D Allali, M E Ketfi, M Radjai and S Bin-Omran J Inorg Organometal Polym Mater (2023). https://doi.org/10.1007/s10904-023-02881-9

    Article  Google Scholar 

Download references

Acknowledgements

Researchers are supporting project number (RSP2024R82) at King Saud University in Riyadh, Saudi Arabia. The author BOUDJELAL Mokhtar acknowledges the financial supporting project number (B00L02UN290120210002), Mascara University, Algeria. The authors acknowledge the helps of Prof. Nacer Badi from Tabuk University, Saudi Arabia, and Prof. Bakhtiar Ul Haq from Jeju National University, Republic of Korea, for their careful reading of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Boudjelal.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boudjelal, M., Bouhadjer, K., Matougui, M. et al. Ab initio prediction of the structural, optoelectronic and thermoelectric properties of double half-Heusler (DHH) ScXRh2Bi2 (X = Nb, Ta) alloys DFT study results. Indian J Phys (2024). https://doi.org/10.1007/s12648-024-03073-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12648-024-03073-y

Keywords

Navigation