Skip to main content
Log in

Formation of free-surface vortex and vortex suppression by rotating stopper-rod at end of tundish casting

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

A rotating stopper-rod technique was proposed to suppress the formation of free-surface vortex in the tundish. The large eddy simulation model coupled with volume of fluid model was developed to study the steel–slag–gas three-phase flow behavior. The critical slag entrapment height of the free-surface vortex and mass of residual steel were predicted at different rotating speeds (30, 60, 90 and 120 r/min) of the rotating stopper-rod. The numerical model was verified by water model experiment. The results showed that by rotating the stopper-rod in the opposite direction of the vortex above the submerged entry nozzle, the formation of vortex can be effectively disturbed and the critical height of the free-surface vortex can be reduced. Particularly for the 2nd strand, when the rotating speeds are 30, 60, 90 and 120 r/min, the critical height of the free-surface vortex above the 2nd strand is 7.3, 4.7, 6.3 and 7.4 cm, respectively. A reasonable rotating speed should be 60 r/min, which can reduce about 2 tons of residual steel. Other rotating speeds just can reduce about 1.6 tons of residual steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Yin, J. Yang, J. Zhang, L. Tang, J. Mater. Res. Technol. 23 (2023) 1781–1791.

    Article  Google Scholar 

  2. C. Huang, Y. Sun, W. Liu, J. Li, S. Yang, J. Dong, Materials 16 (2023) 3209.

    Article  Google Scholar 

  3. A. Gupta, R. Kumar, R.K. Singh, Met. Mater. Int. 28 (2022) 1246–1256.

    Article  Google Scholar 

  4. G. Solorio-Diaz, A. Ramos-Banderas, J. de J. Barreto, R.D. Morales, Steel Res. Int. 78 (2007) 248–253.

  5. Z. Li, M. Zhang, F. Zhou, Y. Lu, X. Zhang, H. Gu, Ironmak. Steelmak. 49 (2022) 1039–1047.

    Article  Google Scholar 

  6. H.X. Li, Q. Wang, H. Lei, J.W. Jiang, Z.C. Guo, J.C. He, ISIJ Int. 54 (2014) 1592–1600.

    Article  Google Scholar 

  7. H. Tang, Y. Liang, Acta Metall. Sin. 52 (2016) 519–528.

    Google Scholar 

  8. Y. Ruan, Y. Yao, S. Shen, B. Wang, J. Zhang, J. Huang, Steel Res. Int. 91 (2020) 1900616.

    Article  Google Scholar 

  9. M. Xuan, M. Chen, K. Zhang, X. Hua, The Minerals, Met. Mater. Ser. Springer, Cham, Germany, 2021.

  10. Q. Wang, L. Wang, H. Li, J. Jiang, X. Zhu, Z. Guo, J. He, Acta Metall. Sin. 54 (2017) 959–968.

    Google Scholar 

  11. B. Khadem Rabe, S.H. Ghoreishi Najafabadi, H. Sarkardeh, Proc. Inst. Civ. Eng. Water Manag. 171 (2018) 18–29.

    Article  Google Scholar 

  12. X. Gao, H. Zhang, J. Liu, B. Sun, Y. Tian, Eng. Appl. Comput. Fluid Mech. 12 (2018) 182–194.

    Google Scholar 

  13. D.Y. Sheng, Z. Zou, Metals 11 (2021) 208.

    Article  Google Scholar 

  14. K. Takahashi, M. Ando, T. Ishii, ISIJ Int. 54 (2014) 304–310.

    Article  Google Scholar 

  15. X. Li, B. Li, Z. Liu, D. Wang, T. Qu, S. Hu, C. Wang, R. Gao, Metall. Mater. Trans. B 52 (2021) 3246–3264.

    Article  Google Scholar 

  16. X. Li, B. Li, Z. Liu, R. Niu, Y. Liu, C. Zhao, C. Huang, H. Qiao, T. Yuan, Metals 9 (2018) 7.

    Article  Google Scholar 

  17. X. Zhao, X. Li, J. Zhang, Metals 11 (2021) 374.

    Article  Google Scholar 

  18. Q. Zhou, T. Zhu, L. Zhang, W. Chen, T. Yuan, Z. Liu, Iron and Steel 57 (2022) No. 7, 68–78.

    Google Scholar 

  19. W. Chen, L. Zhang, Metall. Mater. Trans. B 52 (2021) 528–547.

    Article  Google Scholar 

  20. Q. Li, L. Zhang, W. Chen, Y. Wang, Z. Zhao, J. Zhang, Chinese Journal of Engineering 44 (2022) 690–702.

    Google Scholar 

  21. W. Chen, L. Zhang, Q. Ren, Y. Ren, W. Yang, Metall. Mater. Trans. B 53 (2022) 1446–1461.

    Article  Google Scholar 

  22. J. Zhang, S. Yang, J. Li, W. Yang, Y. Wang, X. Guo, ISIJ Int. 55 (2015) 1684–1692.

    Article  Google Scholar 

  23. N. Alkishriwi, M. Meinke, W. Schröder, A. Braun, H. Pfeifer, Steel Res. Int. 77 (2006) 565–575.

    Article  Google Scholar 

  24. A. Leonard, Advances in Geophysics 18 (1975) 237–248.

    Article  Google Scholar 

  25. Ansys Inc. Fluent, Ansys. 19.0 User’s Guide, 2019.

  26. J. Zhang, Q. Liu, Z. Xin, B. Lu, J. Zhang, J. Li, IOP Conf. Ser.: Mater. Sci. Eng. 668 (2019) 012007.

    Article  Google Scholar 

  27. F. Nicoud, F. Ducros, Flow Turbul. Combust. 62 (1999) 183–200.

    Article  Google Scholar 

  28. H. Zhang, J. Wang, Q. Fang, G. Wu, P. Zhao, H. Ni, Steel Res. Int. 93 (2022) 2100536.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the National Natural Science Foundation of China (52004191), the China Postdoctoral Science Foundation (2022M711120) and the Science and Technology Research Project of Education Department of Hubei Province (B2022020). Besides, the numerical calculation is supported by High-Performance Computing Center of Wuhan University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Q., Zhao, P., Zhang, H. et al. Formation of free-surface vortex and vortex suppression by rotating stopper-rod at end of tundish casting. J. Iron Steel Res. Int. 31, 1104–1116 (2024). https://doi.org/10.1007/s42243-023-01150-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-023-01150-w

Keywords

Navigation