Skip to main content
Log in

Global Geodynamic Model of the Earth and Its Application to the Arctic Region

  • GEODYNAMICS
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

A geodynamic model of the modern Earth is constructed based on the SMEAN 2 global seismic tomography model with an emphasis on the Arctic region. For a spherical Earth model, a solution of the Stokes equation for a viscous fluid was obtained based on seismic tomography data using the CitcomS code. The resulting distributions of temperature anomalies and velocity fields of mantle flows explain the main features of the modern geodynamics of the Arctic region. The temperature difference in the subcrustal mantle between the relatively “cold” western Arctic shelf (Barents and Kara seas) and the “warmer” eastern Arctic shelf (from the Laptev Sea to the Bering Strait) reaches 100 degrees, which correlates with the observed intense methane emission from the shallow shelf of the Eastern Arctic caused by permafrost degradation and destruction of gas hydrates against the background of elevated environmental temperatures. The greenhouse effect of methane in the atmosphere, in turn, contributes to climate warming in the Arctic. The region of Iceland and eastern part of Greenland, under the influence of the mantle upwelling, is characterized by a hot subcrustal mantle and increased heat flow at the surface, causing instability and melting of the Greenland ice sheet from below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. I. Lobkovsky, E. V. Shipilov, and M. V. Kononov, Izv., Phys. Solid Earth 49, 767–785 (2013).

    Article  Google Scholar 

  2. L. I. Lobkovsky, Russ. Geol. Geophys. 57 (3), 371–386 (2016).

    Article  Google Scholar 

  3. N. P. Laverov, L. I. Lobkovsky, M. V. Kononov, N. L. Dobretsov, V. A. Vernikovsky, S. D. Sokolov, and E. V. Shipilov, Geotectonics 47, 1–30 (2013).

    Article  Google Scholar 

  4. L. I. Lobkovsky, Yu. V. Gabsatarov, D. A. Alekseev, I. S. Vladimirova, M. M. Ramazanov, and V. D. Kotelkin, Geodynam. Tectonophys. 13 (5), 0675 (2022).

  5. L. Lobkovsky, Yu. V. Gabsatarov, D. A. Alekseev, I. S. Vladimirova, M. Ramazanov, and V. D. Kotelkin, Russ. J. Earth Sci. 22 (1), 1–15 (2022).

    Article  Google Scholar 

  6. T. W. Becker and L. Boschi, Geochem. Geophys. Geosyst. 3 (1) (2002). https://doi.org/10.1029/2001GC000168

  7. C. K. Lee, S. C. Han, and B. Steinberger, Phys. Earth Planet. Inter. 184 (1–2), 51–62 (2011).

    Article  Google Scholar 

  8. C. Megnin and B. Romanowicz, Geophys. J. Int. 143, 709–728 (2000).

    Article  Google Scholar 

  9. G. Schubert, D. L. Turcotte, and P. Olson, Mantle Convection in the Earth and Planets (Cambridge Univ. Press, New York, 2001).

    Book  Google Scholar 

  10. A. M. Bobrov and A. A. Baranov, Pure Appl. Geophys. 176 (8), 3545–3565 (2019).

    Article  Google Scholar 

  11. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (Prentice-Hall, Englewood Cliffs, NJ, 1987).

    Google Scholar 

  12. A. Ramage and A. J. Wathen, Int. J. Num. Methods Fluids 19, 67–83 (1994).

    Article  Google Scholar 

  13. Y. Fei, J. V. Orman, J. Li, W. van Westrenen, C. Sanloup, W. Minarik, K. Hirose, T. Komabayashi, M. Walter, and K. Funakoshi, J. Geophys. Res. 109, B02305 (2004).

  14. S. Zhong, M. T. Zuber, L. N. Moresi, and M. Gurnis, J. Geophys. Res.: Solid Earth 105 (B5), 11063–11082 (2000).

    Article  Google Scholar 

  15. A. A. Baranov, L. I. Lobkovskii, and A. M. Bobrov, Dokl. Earth Sci. 512 (1), 854–859 (2023).

    Article  Google Scholar 

  16. A. Chuvaev, A. Baranov, and A. Bobrov, Comput. Technol. 25 (2), 103–118 (2020).

    Google Scholar 

  17. L. I. Lobkovsky and V. D. Kotelkin, Russ. J. Earth Sci. 6 (1), 49–58 (2004).

    Article  Google Scholar 

  18. N. Shakhova, I. Semiletov, A. Salyuk, V. Joussupov, D. Kosmach, and O. Gustaffson, Science 327, 1246–1250 (2010).

    Article  Google Scholar 

  19. I. M. Artemieva, Earth-Sci. Rev 188, 469–481 (2019).

    Article  Google Scholar 

  20. L. Lobkovsky, A. Baranov, I. Garagash, M. Ramazanov, I. Vladimirova, Yu. Gabsatarov, D. Alekseev, and I. Semiletov, Geoscience 13, 171 (2023).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Reviewers for constructive comments which helped to improve the manuscript.

Funding

The work was carried out partly within the framework of the state assignment of the P. P. Shirshov Institute of Oceanology of the Russian Academy of Sciences no. FMWE-2021-0004, partly within the framework of the state assignment of the Institute of Earthquake Prediction Theory and Mathematical Geophysics of the Russian Academy of Sciences no. AAAA-A19-119011490131-3 and partly within the framework of the state assignment of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences no. FMWU-2022-0002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Baranov.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobkovsky, L.I., Baranov, A.A., Bobrov, A.M. et al. Global Geodynamic Model of the Earth and Its Application to the Arctic Region. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X23603000

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X23603000

Keywords:

Navigation