Skip to main content
Log in

Monitoring the Baric Modulation of Gas Concentration in the Baksan Neutrino Observatory Tunnel in the Elbrus Region Using Differential Absorption Lidar

  • GEOCHEMISTRY
  • Published:
Doklady Earth Sciences Aims and scope Submit manuscript

Abstract

The concentrations of the gases 12CO2, 13CO2, СН4, and Н2О and the trends of Earth degassing under changing atmospheric pressure were analyzed remotely for the first time using a differential absorption lidar. To reduce the influence of external meteorological factors, the sensing was carried out in a dead-end tunnel of the Baksan Neutrino Observatory of the Institute for Nuclear Research, Russian Academy of Sciences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Jamtveit, A. Petley-Ragan, S. Incel, K. G. Dunkel, C. Aupart, H. Austrheim, F. Corfu, L. Menegon, and F. Renard, J. Geophys. Res. Solid Earth 124, 7725–7755 (2019). https://doi.org/10.1029/2018JB016461

    Article  Google Scholar 

  2. E. Kerstel and L. Gianfrani, Appl. Phys. 92, 439–449 (2008).

    Article  Google Scholar 

  3. G. Lucic, J. Stix, and B. Wing, J. Geophys. Res. Solid Earth 120, 2262–2278 (2015). /https://doi.org/.https://doi.org/10.1002/2014JB011760

  4. K. S. Malowany, J. Stix, J. M. de Moor, K. Chu, G. Lacrampe-Couloume, and B. Sherwood, Geochem., Geophys. Geosyst. 18, 2769–2784 (2017). https://doi.org/10.1002/2017GC006856

    Article  Google Scholar 

  5. M. Queißer, M. Burton, and R. Kazahaya, Earth-Sci. Rev. 188, 389–426 (2019). https://doi.org/10.1016/j.earscirev.2018.11.016

    Article  Google Scholar 

  6. L. Fiorani, F. Colao, and A. Palucci, Opt. Lett. 34, 800–802 (2009).

    Article  Google Scholar 

  7. G. Pisani, A. Boselli, M. Coltelli, G. Leto, G. Pica, S. Scollo, N. Spinelli, and X. Wang, Atmos. Environ. 62, 34–40 (2012). https://doi.org/10.1016/j.atmosenv.2012.08.015

    Article  Google Scholar 

  8. D. H. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources: a Comprehensive Handbook (Springer Science & Business Media, New York, 2013).

    Google Scholar 

  9. S. M. Pershin, A. L. Sobisevich, M. Y. Grishin, V. V. Gravirov, V. A. Zavozin, V. V. Kuzminov, V. N. Lednev, D. V. Likhodeev, V. S. Makarov, A. V. Myasnikov, and A. N. Fedorov, Laser Phys. Lett. 17, 115607 (2020). https://doi.org/10.1088/1612-202X/abbedc

  10. A. L. Pershin, V. A. Sobisevich, M. Y. Zavozin, V. N. Grishin, V. S. Lednev, V. B. Makarov, Y. Y. Petkov, A. N. Ponurovskii, and D. G. Fedorov, Bull. Lebedev Phys. Inst. 49, 36–41 (2022). https://doi.org/10.3103/S1068335622020063

    Article  Google Scholar 

  11. A. A. Malovichko, P. G. Butyrin, T. V. Verkholantseva, F. G. Verkholantsev, and D. Yu. Shulakov, in Proc. 7th Int. Seismological School Modern Methods for Processing and Interpretation Seismological Data (Naroch Village, 2012), pp. 169–174 [in Russian].

  12. I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Ga- mache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Császár, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Müller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun, J. Vander Auwera, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, J. Quantum Spectrosc. Radiat. Transfer 203, 3–69 (2017). https://doi.org/10.1016/j.jqsrt.2017.06.038

    Article  Google Scholar 

  13. A. L. Rizzo, H. Jost, A. Caracausi, A. Paonita, M. Liotta, and M. Martelli, Geophys. Rev. Lett. 41, 2382–2389 (2014).

    Article  Google Scholar 

  14. A. I. Nadezhdinskii and Y. Y. Ponurovskii, Quantum Electron. 49, 613 (2019).

    Article  Google Scholar 

  15. Yu. V. Stenkin, V. V. Alekseenko, A. V. Igoshin, D. A. Kuleshov, K. R. Levochkin, V. I. Stepanov, V. P. Sulakov, V. V. Rulev, and O. B. Shchegolev, JETP 158 (3), 418–422 (2020). https://doi.org/10.1134/S1063776120090095

    Article  Google Scholar 

  16. G. Etiope and G. Martinelli, Phys. Earth Planet. Inter. 129, 185–204 (2002). https://doi.org/10.1016/S0031-9201(01)00292-8

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation, grant no. 19-19-00712.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Pershin.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Maslennikova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pershin, S.M., Gordeev, E.I., Grishin, M.Y. et al. Monitoring the Baric Modulation of Gas Concentration in the Baksan Neutrino Observatory Tunnel in the Elbrus Region Using Differential Absorption Lidar. Dokl. Earth Sc. (2024). https://doi.org/10.1134/S1028334X23603164

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1028334X23603164

Keywords:

Navigation