Skip to main content
Log in

Stiffness theory of rockburst: Research progress and trends

岩爆刚度理论:研究进展与趋势

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The stiffness theory of rockburst plays a crucial role in understanding and preventing rockburst events. This theory evaluates the severity of rockbursts through the difference in stiffness. As a fundamental theory, many new theories have emerged from the stiffness theory, and its applications in mines and deep tunnels are diverse. In this paper, we provide a systematic review of the development process, application status, and application field of rockburst stiffness theory from the perspective of theoretical derivation, laboratory testing, and field application. We also identify key and difficult problems in stiffness theory, such as the determination method of stiffness, the influence of post-peak slope, and the study of rockburst criteria. In addition, based on the existing issues related to stiffness determination, exploration of stiffness changes during rockburst development, and low adaptability in predicting rockburst intensity, we propose the influence of the blasting body-surrounding rock stiffness on the spatial-temporal characteristics, intensity, and mechanism of rockburst, dynamic variable stiffness tests, and stiffness theoretical criteria for determining the rockburst intensity as areas for further research on the stiffness theory of rockburst.

摘要

岩爆刚度理论基于刚度差判断岩爆的剧烈程度, 在认识和防控岩爆方面有着至关重要的作用。 刚度理论作为基础理论, 广泛应用于矿山和深埋隧道等岩石力学领域, 并以此延伸, 形成了许多新型 理论。本文从理论推导、室内试验以及现场应用多角度系统阐释了岩爆刚度理论的发展历程、应用现 状和应用领域。分析总结了刚度理论中的重难点问题, 着重阐释了刚度确认方法、峰后斜率影响规律 以及岩爆判据研究三方面问题。发现现阶段刚度理论在刚度确定、岩爆孕育过程刚度变化、预测岩爆 等级适应性等方面存在不足。基于此, 提出了岩爆刚度理论需要深度研究的两个方向——针对岩爆烈 度判别的刚度理论判据以及“爆体—围岩”刚度对岩爆时空特征、等级与机制的影响规律。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. LIU Dong-qiao, LING Kai, LI Dong, et al. Evolution of anisotropy during sandstone rockburst process under double-faces unloading [J]. Journal of Central South University, 2021, 28(8): 2472–2484. DOI: https://doi.org/10.1007/s11771-021-4780-0.

    Article  Google Scholar 

  2. ORTLEPP W D, STACEY T R. Rockburst mechanisms in tunnels and shafts [J]. Tunnelling and Underground Space Technology, 1994, 9(1): 59–65 DOI: https://doi.org/10.1016/0886-7798(94)90010-8.

    Article  Google Scholar 

  3. WANG Shi-ming, ZHOU Jian, LI Chuan-qi, et al. Rockburst prediction in hard rock mines developing bagging and boosting tree-based ensemble techniques [J]. Journal of Central South University, 2021, 28(2): 527–542 DOI: https://doi.org/10.1007/s11771-021-4619-8.

    Article  Google Scholar 

  4. FENG Xia-ting, XIAO Ya-xun, FENG Guang-liang, et al. Study on the development process of rockbursts [J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 649–673. DOI: https://doi.org/10.13722/j.cnki.jrme.2019.0103. (in Chinese)

    Google Scholar 

  5. FENG Guang-liang, MA Jin-gang, CHEN Bing-rui, et al. Microseismic energy and intensity criterion of rockburst in deep TBM tunnels-A case study of the Neelum-Jhelum hydropower project [J]. Journal of Central South University, 2023, 30(5): 1695–1709 DOI: https://doi.org/10.1007/s11771-023-5324-6.

    Article  Google Scholar 

  6. XIAO Ya-xun, FENG Xia-ting, CHEN Bing-rui, et al. Rockburst risk of tunnel boring machine part-pilot excavation in very strong rockburst section of deep hard tunnel [J]. Rock and Soil Mechanics, 2011, 32(10): 3111–3118 DOI: https://doi.org/10.16285/j.rsm.2011.10.039. (in Chinese)

    Google Scholar 

  7. FENG Guang-liang, FENG Xia-ting, CHEN Bing-rui, et al. A microseismic method for dynamic warning of rockburst development processes in tunnels [J]. Rock Mechanics and Rock Engineering, 2015, 48(5): 2061–2076 DOI: https://doi.org/10.1007/s00603-014-0689-3.

    Article  Google Scholar 

  8. FENG Guang-liang, YOSHIDA S, LACIDOGNA G. Special issue on new advances in acoustic emission and microseismic monitoring technologies in civil engineering [J]. Applied Sciences, 2023, 13(2): 969. DOI: https://doi.org/10.3390/app13020969.

    Article  Google Scholar 

  9. GUO Hao-sen, SUN Qian-cheng, FENG Guang-liang, et al. In-situ observations of damage-fracture evolution in surrounding rock upon unloading in 2400-m-deep tunnels [J]. International Journal of Mining Science and Technology, 2023, 33(4): 437–446. DOI: https://doi.org/10.1016/j.ijmst.2022.11.008

    Article  Google Scholar 

  10. LI Zhao-yi. A total of 36 people died in a mining accident at the Severnaya coal mine in Russia [EB/OL] [2016-02-29]. https://m.huanqiu.com/article/9CaKrnJUc5C.(in Chinese)

  11. SU Yang, PAN Xi. Academician QIAN qihu: A study on the mechanism of avoiding rockburst accidents [EB/OL] [2011-07-15]. https://www.cas.cn/xw/zjsd/201107/t20110715_3309474.shtml. (in Chinese)

  12. FENG Guang-liang, CHEN Bing-rui, JIANG Quan, et al. Excavation-induced microseismicity and rockburst occurrence: similarities and differences between deep parallel tunnels with alternating soft-hard strata [J]. Journal of Central South University, 2021, 28(2): 582–594 DOI: https://doi.org/10.1007/s11771-021-4623-z.

    Article  Google Scholar 

  13. WANG Chun-lai, CHEN Zeng, LIAO Ze-feng, et al. Experimental investigation on predicting precursory changes inentropy for dominant frequency of rockburst [J]. Journal of Central South University, 2020, 27(10): 2834–2848 DOI: https://doi.org/10.1007/s11771-020-4536-2.

    Article  Google Scholar 

  14. GONG Feng-qiang, WANG Yun-liang, LUO Song. Rockburst proneness criteria for rock materials: Review and new insights [J]. Journal of Central South University, 2020, 27(10): 2793–2821. DOI: https://doi.org/10.1007/s11771-020-4511-y.

    Article  Google Scholar 

  15. VAZAIOS I, DIEDERICHS M S, VLACHOPOULOS N. Assessment of strain bursting in deep tunnelling by using the finite-discrete element method [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2019, 11(1): 12–37 DOI: https://doi.org/10.1016/j.jrmge.2018.06.007.

    Article  Google Scholar 

  16. LIU Jian-po, SI Ying-tao, WEI Deng-cheng, et al. Developments and prospects of microseismic monitoring technology in underground metal mines in China [J]. Journal of Central South University, 2021, 28(10): 3074–3098. DOI: https://doi.org/10.1007/s11771-021-4839-y.

    Article  Google Scholar 

  17. REN Fu-qiang, ZHU Chun, HE Man-chao. Moment tensor analysis of acoustic emissions for cracking mechanisms during schist strain burst [J]. Rock Mechanics and Rock Engineering, 2020, 53(1): 153–170 DOI: https://doi.org/10.1007/s00603-019-01897-3.

    Article  Google Scholar 

  18. MA Ke, SHEN Qing-qing, SUN Xing-ye, et al. Rockburst prediction model using machine learning based on microseismic parameters of Qinling water conveyance tunnel [J]. Journal of Central South University, 2023, 30(1): 289–305. DOI: https://doi.org/10.1007/s11771-023-5233-8.

    Article  Google Scholar 

  19. CHEN Yi-yi, XIAO Pei-wei, LI Peng, et al. Formation mechanism of rockburst in deep tunnel adjacent to faults: Implication from numerical simulation and microseismic monitoring [J]. Journal of Central South University, 2022, 29(12): 4035–4050. DOI: https://doi.org/10.1007/s11771-022-5211-6.

    Article  Google Scholar 

  20. JIANG Bei, XIN Zhong-xin, ZHANG Xiu-feng, et al. Mechanical properties and influence mechanism of confined concrete arches in high-stress tunnels [J]. International Journal of Mining Science and Technology, 2023, 33(7): 829–841. DOI: https://doi.org/10.1016/j.ijmst.2023.03.008.

    Article  Google Scholar 

  21. LIANG Zheng-zhao, QIAN Xi-kun, ZHANG Ya-fang, et al. Numerical simulation of dynamic fracture properties of rocks under different static stress conditions [J]. Journal of Central South University, 2022, 29(2): 624–644 DOI: https://doi.org/10.1007/s11771-022-4903-2.

    Article  Google Scholar 

  22. WANG Chun-lai, CAO Cong, LI Chang-feng, et al. Experimental investigation on synergetic prediction of granite rockburst using rock failure time and acoustic emission energy [J]. Journal of Central South University, 2022, 29(4): 1262–1273. DOI: https://doi.org/10.1007/s11771-022-4971-3.

    Article  Google Scholar 

  23. YIN Qian, WU Jiang-yu, ZHU Chun, et al. Shear mechanical responses of sandstone exposed to high temperature under constant normal stiffness boundary conditions [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2021, 7(2): 1–17 DOI: https://doi.org/10.1007/s40948-021-00234-9.

    Article  Google Scholar 

  24. FENG Guang-liang, MA Qi, LACIDOGNA G, et al. Experimental study on the failure characteristic and mechanism of granite time-delayed rockburst under true triaxial condition [J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 2023, 9: 164. DOI: https://doi.org/10.1007/s40948-023-00706-0.

    Article  Google Scholar 

  25. FENG Guang-liang, MA Qi, HE Zhou, et al. Time-delayed failure process of granite and its energy evolution and acoustic emission characteristics [J]. Engineering Failure Analysis, 2024, 157, 107854. DOI: https://doi.org/10.1016/j.engfailanal.2023.107854.

    Article  Google Scholar 

  26. DONG Long-jun, YAN Xian-hang, WANG Jian, et al. Case study of microseismic tomography and multi-parameter characteristics under mining disturbances [J]. Journal of Central South University, 2023, 30(7): 2252–2265 DOI: https://doi.org/10.1007/s11771-023-5358-9.

    Article  Google Scholar 

  27. COOK N G W. A note on rockbursts considered as a problem of stability [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1965, 65(8): 437–446 https://hdl.handle.net/10520/AJA0038223X4914.

    Google Scholar 

  28. COOK N G W. The failure of rock [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1965, 2(4): 389–403. DOI: https://doi.org/10.1016/0148-9062(65)90004-5.

    Article  Google Scholar 

  29. SALAMON M D G. Stability, instability and design of pillar workings [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1970, 7(6): 613–631. DOI: https://doi.org/10.1016/0148-9062(70)90022-7.

    Article  Google Scholar 

  30. BLAKE W. Rock-burst mechanics [M]. Colorado: Quarterly of Colorado School of Mines, 1972, 65(1): 1–64.

    Google Scholar 

  31. SIMON R. Analysis of fault-slip mechanisms in hard rock mining [D]. Montreal: McGill University, 1999.

    Google Scholar 

  32. HUDSON J A, BROWN E T, FAIRHURST C. Optimizing the control of rock failure in servo-controlled laboratory tests [J]. Rock mechanics, 1971, 3(4): 217–224 DOI: https://doi.org/10.1007/BF01238181.

    Article  Google Scholar 

  33. HUDSON J A. Rock mechanics principles in engineering practice [M]. London: Butterworths, 1989.

    Google Scholar 

  34. RUMMEL F, FAIRHURST C. Determination of the post-failure behavior of brittle rock using a servo-controlled testing machine [J]. Rock Mechanics, 1970, 2(4): 189–204. DOI: https://doi.org/10.1007/BF01245574.

    Article  Google Scholar 

  35. PAN Yue, WANG Zhi-qiang, LI Ai-wu. Comprehensive rigidity and comprehensive energy criterion of the rock burst [J]. Rock and Soil Mechanics, 2009, 30(12): 3671–3676 DOI: https://doi.org/10.16285/j.rsm.2009.12.012. (in Chinese)

    Google Scholar 

  36. LIU Jing-ru. Study on geological engineering problems in Yufengsi deep-buried tunnel along Yunnan-Tibet railway [D]. Beijing: Chinese Academy of Geological Sciences (Beijing), 2007. (in Chinese)

    Google Scholar 

  37. LIU Jing-ru, ZHANG Yong-shuang, WU Shu-ren, et al. Rigidity criterion for rockburst in the Yufengsi tunnel in Lijiang City of the Yunnan-Tibet Railway [J]. Geological Bulletin of China, 2007, 26(6): 748–755. (in Chinese)

    Google Scholar 

  38. GU Ming-cheng, HE Fa-liang, CHEN Cheng-zong. Research on rockburst in Qinling tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2002(9): 1324–1329. (in Chinese)

  39. QIAN Qi-hu. Definition, mechanism, classification and quantitative forecast model for rockburst and pressure bump [J]. Rock and Soil Mechanics, 2014, 35(1): 1–6 DOI: https://doi.org/10.16285/j.rsm.2014.01.028. (in Chinese)

    Google Scholar 

  40. TANG Bao-qing, CAO Ping. Discussion on mechanism of rock burst in mine [J]. Jiangxi Nonferrous Metals, 2000(2): 5–7, 14. DOI: https://doi.org/10.13264/j.cnki.ysjskx.2000.02.002. (in Chinese)

  41. SI Xue-feng, HUANG Lin-qi, GONG Feng-qiang, et al. Experimental investigation on influence of loading rate on rockburst in deep circular tunnel under true-triaxial stress condition [J]. Journal of Central South University, 2020, 27(10): 2914–2929. DOI: https://doi.org/10.1007/s11771-020-4518-4.

    Article  Google Scholar 

  42. COOK N G W, HOJEM J P M. A rigid 50-ton compression and tension testing machine [J]. South African Mechine Engineer, 1966, 1: 89–92.

    Google Scholar 

  43. BIENIAWSKI Z T. Mechanism of rock fracture in compression [M]. Pretoria: South African Council for Scientific and Industrial Research, 1966.

    Google Scholar 

  44. HUDSON J A, CROUCH S L, FAIRHURST C. Soft, stiff and servo-controlled testing machines: A review with reference to rock failure [J]. Engineering Geology, 1972, 6(3): 155–189. DOI: https://doi.org/10.1016/0013-7952(72)90001-4.

    Article  Google Scholar 

  45. STAVROGIN A N, TARASOV B G. Experimental physics and rock mechanics [M]. Boca Raton: CRC Press, 2001.

    Google Scholar 

  46. WIEBOLS G A, COOK N G W. An energy criterion for the strength of rock in polyaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1968, 5(6): 529–549 DOI: https://doi.org/10.1016/0148-9062(68)90040-5.

    Article  Google Scholar 

  47. LIU Chong-yan, ZHAO Guang-ming, XU Wen-song, et al. Experimental investigation on failure process and spatio-temporalevolution of rockburst in granite with a prefabricated circular hole [J]. Journal of Central South University, 2020, 27(10): 2930–2944. DOI: https://doi.org/10.1007/s11771-020-4519-3.

    Article  Google Scholar 

  48. BIENIAWSKI Z T, DENKHAUS H G, VOGLER U W. Failure of fractured rock [J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts, 1969, 6(3): 323. DOI: https://doi.org/10.1016/0148-9062(69)90009-6.

    Article  Google Scholar 

  49. JIANG Bang-you, GU Shi-tan, WANG Lian-guo, et al. Strainburst process of marble in tunnel-excavation-inducedstress path considering intermediate principal stress [J]. Journal of Central South University, 2019, 26(4): 984–999 DOI: https://doi.org/10.1007/s11771-019-4065-z.

    Article  Google Scholar 

  50. BAGDE M N, PETROŠ V. Fatigue properties of intact sandstone samples subjected to dynamic uniaxial cyclical loading [J]. International Journal of Rock Mechanics and Mining Sciences, 2005, 42(2): 237–250 DOI: https://doi.org/10.1016/j.ijrmms.2004.08.008.

    Article  Google Scholar 

  51. GUAN Fan-fan, LI Yan-rong, GAO Guo-hong, et al. Horizontal compression test: A proposed method for indirect determination of tensile strength of stiff soils and soft rocks [J]. Frontiers in Earth Science, 2022, 10: 839073. DOI: https://doi.org/10.3389/feart.2022.839073.

    Article  Google Scholar 

  52. ESMAEILI M, FARSI S, SHAMOHAMMADI A. Effect of rock strength on the degradation of ballast equipped with under sleeper pad [J]. Construction and Building Materials, 2022, 321: 126413. DOI: https://doi.org/10.1016/j.conbuildmat.2022.126413.

    Article  Google Scholar 

  53. HE Man-chao, MIAO Jin-li, LI De-jian, et al. Experimental study on rockburst processes of granite specimen at great depth [J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(5): 865–876. (in Chinese)

    Google Scholar 

  54. CHENG Cheng. Effect of rock mass stiffness on strain rockburst [D]. Beijing China University of Mining and Technology (Beijing), 2013. (in Chinese)

  55. HOU P Y, CAI M, ZHANG X W, et al. Post-peak stress–strain curves of brittle rocks under axial-and lateral-strain-controlled loadings [J]. Rock Mechanics and Rock Engineering, 2022, 55(2): 855–884 DOI: https://doi.org/10.1007/s00603-022-02839-2.

    Article  Google Scholar 

  56. XU Y H, CAI M. Influence of loading system stiffness on post-peak stress-strain curve of stable rock failures [J]. Rock Mechanics and Rock Engineering, 2017, 50(9): 2255–2275. DOI: https://doi.org/10.1007/s00603-017-1231-1.

    Article  MathSciNet  Google Scholar 

  57. ZHAO Tong-bin, TAN Yun-liang, LIU Bin, et al. The invention relates to an internal and external frame combined variable stiffness rock mechanics testing machine and an experimental method thereof: China, CN110031320B [P]. 2020-06-16. (in Chinese)

  58. KHOSRAVI A, SIMON R. Verification of the CSDS model in estimating the post peak behavior of hard rocks [J]. International Journal of Geomechanics, 2018, 18(3): 04017166.1–04017166.15. DOI: https://doi.org/10.1061/(ASCE)GM.1943-5622.0001090.

    Article  Google Scholar 

  59. ZHAO Tong-bin, YIN Yan-chun, TAN Yun-liang, et al. Development of a rock testing system with changeable stiffness and its application in the study on the rock failure mechanical behavior [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(9): 1846–1857. DOI: https://doi.org/10.13722/j.cnki.jrme.2021.1323.(in Chinese)

    Google Scholar 

  60. AUBERTIN M, SIMON R. A damage initiation criterion for low porosity rocks [J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3–4): 17.e1–17.e15. DOI: https://doi.org/10.1016/S1365-1609(97)00145-7.

    Article  Google Scholar 

  61. TARASOV B, POTVIN Y. Universal criteria for rock brittleness estimation under triaxial compression [J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 59: 57–69. DOI: https://doi.org/10.1016/j.ijrmms.2012.12.011.

    Article  Google Scholar 

  62. TANG Li-zhong. Study on monitoring and prediction of seismicity and rockburst in a deep mine [D]. Changsha: Central South University, 2008. (in Chinese)

    Google Scholar 

  63. HOMAND F, PIGUET J P, REVALOR R. Dynamic phenomena in mines and characteristics of rocks [C]//Proceedings of the 2nd International Symposium on Rock Bursts and Seismicity in Mines. Minneapolis: [s. n.], 1988: 195–209.

  64. HUO Meng-zhe, LIU Xi-qi, LIN Man-qin. Mechanical mechanism of complete shear rockburst in surrounding rock [J]. Modern Tunnelling Technology, 2021, 58(1): 10–18 DOI: https://doi.org/10.13807/j.cnki.mtt.2021.01.002. (in Chinese)

    Google Scholar 

  65. KAISER P K, McCREATH D R, TANNANT D D. Canadian rockburst support handbook [M]. Geomechanics Research Center, 1996.

  66. FENG Xia-ting, CHEN Bing-rui, ZHANG Chuan-qing, et al. Mechanism, warning and dynamic control of rockburst development processes [M]. Beijing: Science Press, 2013: 345–346. (in Chinese)

    Google Scholar 

  67. HE Man-chao, CHENG Tai, QIAO Ya-fei, et al. A review of rockburst: Experiments, theories, and simulations [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2023, 15(5): 1312–1353. DOI: https://doi.org/10.1016/j.jrmge.2022.07.014.

    Article  Google Scholar 

  68. TURCHANINOV I A, MARKOV G A, GZOVSKY M V, et al. State of stress in the upper part of the Earth’s crust based on direct measurements in mines and on tectonophysical and seismological studies [J]. Physics of the Earth and Planetary Interiors, 1972, 6(4): 229–234. DOI: https://doi.org/10.1016/0031-9201(72)90005-2.

    Article  Google Scholar 

  69. BARTON N, LIEN R, LUNDE J. Engineering classification of rock masses for the design of tunnel support [J]. Rock mechanics, 1974, 6(4): 189–236. DOI: https://doi.org/10.1007/BF01239496.

    Article  Google Scholar 

  70. LI Xi-bing, ZHOU Zi-long, LOK T S, et al. Innovative testing technique of rock subjected to coupled static and dynamic loads [J]. International Journal of Rock Mechanics & Mining Sciences, 2008, 45(5): 739–748 DOI: https://doi.org/10.1016/j.ijrmms.2007.08.013.

    Article  Google Scholar 

  71. LI Xi-bing, GONG Feng-qiang, TAO Ming, et al. Failure mechanism and coupled static-dynamic loading theory in deep hard rock mining: A review [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2017, 9(4): 767–782 DOI: https://doi.org/10.1016/j.jrmge.2017.04.004.

    Article  Google Scholar 

  72. COOK N G W, HOEK E, PRETORIUS J P, et al. Rock mechanics applied to study of rockbursts [J]. Journal of the Southern African Institute of Mining and Metallurgy, 1966, 66(10): 435–528.

    Google Scholar 

  73. HE Ben-guo, ZELIG R, HATZOR Y H, et al. Rockburst generation in discontinuous rock masses [J]. Rock Mechanics and Rock Engineering, 2016, 49(10): 4103–4124. DOI: https://doi.org/10.1007/s00603-015-0906-8.

    Article  Google Scholar 

  74. XIANG Peng, JI Hong-guang, KONG Ling-rui, et al. Rockburst mechanism analysis based on dynamic loading and unloading effect of two-body systems [J]. Journal of China Coal Society, 2016, 41(11): 2698–2705 DOI: https://doi.org/10.13225/j.cnki.jccs.2016.0404. (in Chinese)

    Google Scholar 

  75. MA Tian-hui, TANG Chun-an, TANG Shi-bin, et al. Rockburst mechanism and prediction based on microseismic monitoring [J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 177–188. DOI: https://doi.org/10.1016/j.ijrmms.2018.07.016.

    Article  Google Scholar 

  76. KIDYBIŃSKI A. Bursting liability indices of coal [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1981, 18(4): 295–304. DOI: https://doi.org/10.1016/0148-9062(81)91194-3.

    Article  Google Scholar 

  77. FENG Run-hua, ZHANG Yi-huai, REZAGHOLILOU A, et al. Brittleness Index: from conventional to hydraulic fracturing energy model [J]. Rock Mechanics and Rock Engineering, 2020, 53(2): 739–753 DOI: https://doi.org/10.1007/s00603-019-01942-1.

    Article  Google Scholar 

  78. GONG Feng-qiang, LUO Song, JIANG Quan, et al. Theoretical verification of the rationality of strain energy storage index as rockburst criterion based on linear energy storage law [J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(6): 1737–1746. DOI: https://doi.org/10.1016/j.jrmge.2021.12.015.

    Article  Google Scholar 

  79. PAN Yue, ZHANG Yong, WU Min-ying, et al. Analysis of catastrophe theory for pillar destabilization in dissymmetric mining [J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3694–3702 DOI: CNKI:SUN:YSLX.0.2006-S2-055.

    Google Scholar 

  80. WANG Xin-rong, GUAN Kai, YANG Tian-hong, et al. Instability mechanism of pillar burst in asymmetric mining based on cusp catastrophe model [J]. Rock Mechanics and Rock Engineering, 2021, 54(3): 1463–1479. DOI: https://doi.org/10.1007/s00603-020-02313-x.

    Article  Google Scholar 

  81. LI Tian-bin, MA Chun-chi, ZHU Ming-lei, et al. Geomechanical types and mechanical analyses of rockbursts [J]. Engineering Geology, 2017, 222: 72–83. DOI: https://doi.org/10.1016/j.enggeo.2017.03.011.

    Article  Google Scholar 

  82. WEI Xin-jiang, WANG Xiao, CHEN Tao-tao, et al. Comparison of the fold and cusp catastrophe models for tensile cracking and sliding rockburst [J]. Mathematical Problems in Engineering, 2021: 1–10. DOI: https://doi.org/10.1155/2021/6682999.

  83. ZHANG Q B, ZHAO J. A review of dynamic experimental techniques and mechanical behaviour of rock materials [J]. Rock Mechanics and Rock Engineering, 2014, 47(4): 1411–1478 DOI: https://doi.org/10.1007/s00603-013-0463-y.

    Article  Google Scholar 

  84. NEMAT-NASSER S, HORII H. Compression-induced nonplanar crack extension with application to splitting, exfoliation, and rockburst [J]. Journal of Geophysical Research Solid Earth, 1982, 87(B8): 6805–6821 DOI: https://doi.org/10.1029/JB087iB08p06805.

    Article  Google Scholar 

  85. LING Jian-ming, LIU Xiao-jun. Damage mechanical analysis method for stability of surrounding rocks of unloading underground caverns [J]. Journal of Shijiazhuang Railway Institute, 1998, 11(4): 10–15. DOI: https://doi.org/10.13319/j.cnki.sjztddxxbzrb.1998.04.002. (in Chinese)

    Google Scholar 

  86. XIE H, PARISEAU W G, et al. Fractal character and mechanism of rock bursts [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1993, 30(4): 343–350 DOI: https://doi.org/10.1016/0148-9062(93)91718-X.

    Article  Google Scholar 

  87. ZHANG Xiao-jun. Pattern and damage evolution of unloading rockburst for high-stress hard rock [J]. Rock and Soil Mechanics, 2012, 33(12): 3554–3560 DOI: https://doi.org/10.1007/s11783-011-0280-z. (in Chinese)

    Google Scholar 

  88. SU Guo-shao, SHI Yan-jiong, FENG Xia-ting, et al. True-triaxial experimental study of the evolutionary features of the acoustic emissions and sounds of rockburst processes [J]. Rock Mechanics and Rock Engineering, 2018, 51(2): 375–389 DOI: https://doi.org/10.1007/s00603-017-1344-6.

    Article  Google Scholar 

  89. FENG Xia-ting, YU Yang, FENG Guang-liang, et al. Fractal behaviour of the microseismic energy associated with immediate rockbursts in deep, hard rock tunnels [J]. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 2016, 51: 98–107. DOI: https://doi.org/10.1016/j.tust.2015.10.002.

    Article  Google Scholar 

  90. MONDAL D, ROY P N S. Fractal and seismic b-value study during dynamic roof displacements (roof fall and surface blasting) for enhancing safety in the longwall coal mines [J]. Engineering Geology, 2019, 253: 184–204. DOI: https://doi.org/10.1016/j.enggeo.2019.03.018.

    Article  Google Scholar 

  91. LI Yu-tao, ZHAO Yi-xin, JIANG Yao-dong, et al. Characteristics of pore and fracture of coal with bursting proneness based on DIC and fractal theory [J]. Energies, 2020, 13(20): 5404. DOI: https://doi.org/10.3390/en13205404.

    Article  Google Scholar 

  92. PAN Yi-shan. The burst in coal mine [M]. Beijing: Science Press, 2018: 1–678. (in Chinese)

    Google Scholar 

  93. AGLAWE J P. Unstable and violent failure around underground openings in highly stressed ground [D]. Queen’s University at Kingston, 2000.

  94. LI Yu-sheng. Mechanism and preliminary application of impact ground pressure [J]. Journal of China University of Mining & Technology, 1985, 14(3): 37–43. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XIAO Ya-xun provided the idea and wrote the original draft. FENG Guang-liang supervised the project. ZHAO Tong-bin and YIN Yan-chun performed some investigations. WAN Rong-ji conducted literature review.

Corresponding author

Correspondence to Guang-liang Feng  (丰光亮).

Ethics declarations

XIAO Ya-xun, WAN Rong-ji, FENG Guang-liang, ZHAO Tong-bin, YIN Yan-chun declare that they have no conflict of interest.

Additional information

Foundation item: Project(42172317) supported by the National Natural Science Foundation of China; Project(2021326) supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Yx., Wan, Rj., Feng, Gl. et al. Stiffness theory of rockburst: Research progress and trends. J. Cent. South Univ. 30, 4230–4251 (2023). https://doi.org/10.1007/s11771-023-5497-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5497-z

Key words

关键词

Navigation