Skip to main content
Log in

Analysis of incompressible viscous fluid flow in convergent and divergent channels with a hybrid meta-heuristic optimization techniques in ANN: An intelligent approach

用人工神经网络混合元启发式优化技术分析不可压缩黏性流体在收敛和发散通道中的流动:一种智能方法

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In this research article, we introduce a numerical investigation through artificial neural networks (ANN) integrated with evolutionary algorithm especially Archimedean optimization algorithm (AOA) hybrid with the water cycle algorithm (WCA) to address and enhance the analysis of the non-linear magneto-hydrodynamic (MHD) Jeffery-Hamel problem, especially stretching/shrinking in convergent and divergent channel. This combined technique is referred to as ANN-AOA-WCA. The complex nonlinear magneto-hydrodynamic Jeffery-Hamel problem based partial differential equations are transformed into non-linear system of ordinary differential equations for velocity and temperature. We formulate the ANN based fitness function to find the solution of non-linear differential. Subsequently, we employ a novel hybridization of AOA and WCA (AOA-WCA) to optimize the ANN based fitness function and identify the best optimal weights and biases for ANN. To demonstrate the effectiveness and versatility of our proposed hybrid method, we explore MHD models across a range of Reynolds numbers, channel angles and stretchable boundary value leading to the development of two distinct cases. ANN-AOA-WCA numerical results closely align with reference solutions (NDSOLVE) and the absolute error between NDSOLVE and ANN-AOA-WCA is up to 3.35 × 10−8, particularly critical to the understanding of stretchable convergent and divergent channel. Furthermore, to validate the ANN-AOA-WCA technique, we conducted a statistical analysis over 150 independence runs to find the fitness value.

摘要

本文采用人工神经网络(ANN)与进化算法(特别是阿基米德优化算法(AOA)和水循环算法(WCA)相结合的方法)对非线性磁流体动力学(MHD)的Jeffery-Hamel 问题, 特别是收敛和发散通道中的拉伸/收缩问题进行了数值研究。这种组合技术被称为ANN-AOA-WCA。将基于复杂非线性磁流体动力学Jeffery-Hamel 问题的偏微分方程转化为速度和温度的非线性常微分方程系统, 我们建立了基于人工神经网络的适应度函数来求解非线性微分问题。随后, 采用了一种新的AOA 和WCA 结合方法(AOA-WCA)来优化基于神经网络的适应度函数, 并确定了神经网络的最优权值和偏差。为了证明提出混合方法的有效性和多功能性, 探索了一系列雷诺数、通道角和可拉伸边界值的MHD 模型, 从而开发了两种不同的情况。ANN-AOA-WCA 的数值结果与参考解(NDSOLVE)非常接近, NDSOLVE 与ANN-AOA-WCA 的绝对误差约为3.35×10−8, 对可拉伸收敛和发散通道的理解特别关键。此外, 为了验证ANN-AOA-WCA 技术, 我们对150 多个独立运行进行了统计分析, 以获得适应度值。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. JEFFERY G B L. The two-dimensional steady motion of a viscous fluid [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1915, 29(172): 455–465. DOI: https://doi.org/10.1080/14786440408635327.

    Article  Google Scholar 

  2. HAMEL G. Spiralförmige Bewegungen zäher Flüssigkeiten [J]. Jahresbericht der Deutschen Mathematiker-Vereinigung. 1917, 25: 34–60. https://eudml.org/doc/145468.

    Google Scholar 

  3. PAPAVASILEIOU P, KORONAKI E D, POZZETTI G, et al. An efficient chemistry-enhanced CFD model for the investigation of the rate-limiting mechanisms in industrial Chemical Vapor Deposition reactors [J]. Chemical Engineering Research and Design, 2022, 186: 314–325. DOI: https://doi.org/10.1016/j.cherd.2022.08.005.

    Article  Google Scholar 

  4. DING Er-xiong, LIU Peng, KHAN A T, et al. Towards the synthesis of semiconducting single-walled carbon nanotubes by floating-catalyst chemical vapor deposition: Challenges of reproducibility [J]. Carbon, 2022, 195: 92–100. DOI: https://doi.org/10.1016/j.carbon.2022.04.020.

    Article  Google Scholar 

  5. ARAIN M B, ZEESHAN A, BHATTI M M, et al. Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field [J]. Journal of Central South University, 2023, 30(8): 2599–2615. DOI: https://doi.org/10.1007/s11771-023-5398-1.

    Article  Google Scholar 

  6. ZHANG Ze-long, SUN Qiang, WANG Cheng, et al. Numerical simulation and experimental study on a DC multi-cathode arc plasma generator [J]. Plasma Chemistry and Plasma Processing, 2023: 1–17. DOI: https://doi.org/10.1007/s11090-023-10377-0.

  7. LIU En-bin, PENG Yong, JI Yong-qiang, et al. Energy consumption optimization model of large parallel natural gas pipeline network: Using compressors with multiple operating modes [J]. Energy & Fuels, 2023, 37(1): 774–784. DOI: https://doi.org/10.1021/acs.energyfuels.2c02929.

    Article  Google Scholar 

  8. ROSENHEAD L. The steady two-dimensional radial flow of viscous fluid between two inclined plane walls [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1940, 175(963): 436–467. DOI: https://doi.org/10.1098/rspa.1940.0068.

    Google Scholar 

  9. MILLSAPS K, POHLHAUSEN K. Thermal distributions in Jeffery-Hamel flows between nonparallel plane walls [J]. Journal of the Aeronautical Sciences, 1953, 20(3): 187–196. DOI: https://doi.org/10.2514/8.2587.

    Article  MathSciNet  Google Scholar 

  10. RILEY N. Heat transfer in jeffery-hamel flow [J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1989, 42(2): 203–211. DOI: https://doi.org/10.1093/qjmam/42.2.203.

    Article  MathSciNet  Google Scholar 

  11. FRAENKEL L E. Laminar flow in symmetrical channels with slightly curved walls, I. On the Jeffery-Hamel solutions for flow between plane walls [J]. Proceedings of the Royal Society of London Series A Mathematical and Physical Sciences, 1962, 267(1328): 119–138. DOI: https://doi.org/10.1098/rspa.1962.0087.

    MathSciNet  Google Scholar 

  12. TERRILL R M. Slow laminar flow in a converging or diverging channel with suction at one wall and blowing at the other wall [J]. Journal of Applied Mathematics and Physics (ZAMP), 1965, 16(2): 306–308. DOI: https://doi.org/10.1007/BF01587656.

    Article  MathSciNet  Google Scholar 

  13. SCHLICHTING (DECEASED) H, GERSTEN K. Boundarylayer control (suction/blowing) [M]//Boundary-Layer Theory. Berlin, Heidelberg: Springer, 2017: 291–320. https://doi.org/10.1007/978-3-662-52919-5_11

    Google Scholar 

  14. ROY J S, NAYAK P. Steady two dimensional incompressible laminar visco-elastic flow in a converging or diverging channel with suction and injection [J]. Acta Mechanica, 1982, 43(1): 129–136. DOI: https://doi.org/10.1007/BF01175821.

    Article  Google Scholar 

  15. AHMAD S, FAROOQ M. Double-diffusive Hamel-Jeffrey flow of nanofluid in a convergent/divergent permeable medium under zero mass flux [J]. Scientific Reports, 2023, 13: 1102. DOI: https://doi.org/10.1038/s41598-023-27938-0.

    Article  Google Scholar 

  16. KUMBINARASAIAH S, RAGHUNATHA K R. Numerical solution of the Jeffery–Hamel flow through the wavelet technique [J]. Heat Transfer, 2022, 51(2): 1568–1584. DOI: https://doi.org/10.1002/htj.22364.

    Article  Google Scholar 

  17. HADDOUT Y, ESSAGHIR E, RAFIKI A, et al. The Graetz problem extended to Jeffery-Hamel flow through a convergent plate channel with step-change in wall temperature and streamwise conduction [J]. International Communications in Heat and Mass Transfer, 2022, 134: 105986. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2022.105986.

    Article  Google Scholar 

  18. RAGHUNATHA K R, SIDDANAGOWDRU S O. Investigation of Jeffery–Hamel flow with high magnetic field and nanoparticle by DTM [J]. Heat Transfer, 2022, 51(4): 3562–3572. DOI: https://doi.org/10.1002/htj.22463.

    Article  Google Scholar 

  19. ASGHAR Z, SAIF R S, GHAFFARI A Z. Numerical study of boundary stresses on Jeffery-Hamel flow subject to Soret/Dufour effects [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2023, 237(5): 1088–1105. DOI: https://doi.org/10.1177/09544062221126646.

    Google Scholar 

  20. HASSAN M, RIZWAN M, BHATTI M M. Investigating the influence of temperature-dependent rheological properties on nanofluid behavior in heat transfer [J]. Nanotechnology, 2023, 34(50): 505404. DOI: https://doi.org/10.1088/1361-6528/acfb15.

    Article  Google Scholar 

  21. ALI F M, NAZAR R, ARIFIN N M, et al. MHD stagnationpoint flow and heat transfer towards stretching sheet with induced magnetic field [J]. Applied Mathematics and Mechanics, 2011, 32(4): 409–418. DOI: https://doi.org/10.1007/s10483-011-1426-6.

    Article  MathSciNet  Google Scholar 

  22. USTA O B, BUTLER J E, LADD A J C. Flow-induced migration of polymers in dilute solution [J]. Physics of Fluids, 2006, 18(3): 031703. DOI: https://doi.org/10.1063/1.2186591.

    Article  Google Scholar 

  23. FATIMA A, SAGHEER M, HUSSAIN S. A study of inclined magnetically driven Casson nanofluid using the Cattaneo-Christov heat flux model with multiple slips towards a chemically reacting radially stretching sheet [J]. Journal of Central South University, 2023, 30(11): 3721–3736. DOI: https://doi.org/10.1007/s11771-023-5485-3.

    Article  Google Scholar 

  24. FARHANA K, MAHAMUDE A S F, KADIRGAMA K. Numerical study of solar tray with noble Mxene nanofluids [J]. Journal of Central South University, 2023, 30(11): 3656–3669. DOI: https://doi.org/10.1007/s11771-023-5483-5.

    Article  Google Scholar 

  25. AKINSHILO A T, ILEGBUSI A O, ALI H M, et al. Impact of melting and radiation on MHD mixed convective heat transfer slip flow through vertical porous embedded microchannel [J]. Journal of Central South University, 2023, 30(11): 3670–3681. DOI: https://doi.org/10.1007/s11771-023-5400-y.

    Article  Google Scholar 

  26. KUMBINARASAIAH S, RAGHUNATHA K R, PREETHAM M P. Applications of Bernoulli wavelet collocation method in the analysis of Jeffery-Hamel flow and heat transfer in Eyring-Powell fluid [J]. Journal of Thermal Analysis and Calorimetry, 2023, 148(3): 1173–1189. DOI: https://doi.org/10.1007/s10973-022-11706-9.

    Article  Google Scholar 

  27. UMAVATHI J C. Jeffery-hamel flow in conducting nanofluid: Non-darcy model [J]. Nanoscience and Technology: an International Journal, 2023, 14(4): 17–30. DOI: https://doi.org/10.1615/nanoscitechnolintj.v14.i4.20.

    Article  MathSciNet  Google Scholar 

  28. CHANDRA P, DAS R. A hybrid RSA-IPA optimizer for designing an artificial neural network to study the Jeffery-Hamel blood flow with copper nanoparticles: Application to stenotic tapering artery [J]. Results in Engineering, 2023, 20: 101542. DOI: https://doi.org/10.1016/j.rineng.2023.101542.

    Article  Google Scholar 

  29. SELIMEFENDIGIL F, ÖZTOP H F, ABU-HAMDEH N. Phase change dynamics in a triangular elastic walled vented cavity having phase change material packed bed during nanofluid forced convection [J]. Journal of Central South University, 2023, 30(11): 3630–3640. DOI: https://doi.org/10.1007/s11771-023-5286-8.

    Article  Google Scholar 

  30. AZHAR E, KAMRAN A. Analysis of magnetomicrostructural improvisation of Jeffery-Hamel flow of a viscoelastic fluid [J]. Journal of Central South University, 2023, 30(6): 1763–1775. DOI: https://doi.org/10.1007/s11771-023-5319-3.

    Article  Google Scholar 

  31. YANG Liu, ZHANG Dong-kun, KARNIADAKIS G E. Physics-informed generative adversarial networks for stochastic differential equations [J]. SIAM Journal on Scientific Computing, 2020, 42(1): A292–A317. DOI: https://doi.org/10.1137/18m1225409.

    Article  MathSciNet  Google Scholar 

  32. RAISSI M. Forward-backward stochastic neural networks: Deep learning of high-dimensional partial differential equations [EB/OL]. 2018: arXiv: 1804.07010. https://arxiv.org/abs/1804.07010.pdf

  33. MATTHEAKIS M, SONDAK D, DOGRA A S, et al. Hamiltonian neural networks for solving equationsof motion [J]. Physical Review E, 2022, 105(6): 065305. DOI: https://doi.org/10.1103/physreve.105.065305.

    Article  Google Scholar 

  34. MATTHEAKIS M, PROTOPAPAS P, SONDAK D, et al. Physical symmetries embedded in neural networks [EB/OL]. 2019: arXiv: 1904.08991. https://arxiv.org/abs/1904.08991.pdf

  35. RAISSI M, PERDIKARIS P, KARNIADAKIS G E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J]. Journal of Computational Physics, 2019, 378: 686–707. DOI: https://doi.org/10.1016/j.jcp.2018.10.045.

    Article  MathSciNet  Google Scholar 

  36. PISCOPO M L, SPANNOWSKY M, WAITE P. Solving differential equations with neural networks: Applications to the calculation of cosmological phase transitions [J]. Physical Review D, 2019, 100: 016002. DOI: https://doi.org/10.1103/physrevd.100.016002.

    Article  MathSciNet  Google Scholar 

  37. HAGGE T, STINIS P, YEUNG E, et al. Solving differential equations with unknown constitutive relations as recurrent neural networks [EB/OL]. 2017: arXiv: 1710.02242. https://arxiv.org/abs/1710.02242.pdf

  38. LIU H, DENG D H. An enhanced hybrid ensemble deep learning approach for forecasting daily PM2.5 [J]. Journal of Central South University, 2022, 29(6): 2074–2083. DOI: https://doi.org/10.1007/s11771-022-5051-4.

    Article  Google Scholar 

  39. XUE Z, LI T, PENG S T, ZHANG C Y, et al. A data-driven method to predict future bottlenecks in a remanufacturing system with multi-variant uncertainties [J]. Journal of Central South University, 2022, 29(1): 129–145. DOI: https://doi.org/10.1007/s11771-022-4906-z.

    Article  Google Scholar 

  40. AZAR W A, NAZAR P S. An optimized and chaotic intelligent system for a 3DOF rehabilitation robot for lower limbs based on neural network and genetic algorithm [J]. Biomedical Signal Processing and Control, 2021, 69: 102864. DOI: https://doi.org/10.1016/j.bspc.2021.102864.

    Article  Google Scholar 

  41. ASLAM M N, RIAZ A, SHAUKAT N, et al. Machine learning analysis of heat transfer and electroosmotic effects on multiphase wavy flow: A numerical approach [J]. International Journal of Numerical Methods for Heat & Fluid Flow. 2023. DOI: https://doi.org/10.1108/hff-07-2023-0387.2023

  42. RAISSI M. Forward - backward stochastic neural networks: Deep learning of high-dimensional partial differential equations [M]//Peter Carr Gedenkschrift. 637–655: WORLD Scientific, 2023: 637–655. DOI: https://doi.org/10.1142/9789811280306_0018.

  43. ASLAM M N, SHAHEEN A, RIAZ A, et al. An ANN-PSO approach for mixed convection flow in an inclined tube with ciliary motion of Jeffrey six constant fluid [J]. Case Studies in Thermal Engineering, 2023, 52: 103740. DOI: https://doi.org/10.1016/j.csite.2023.103740.

    Article  Google Scholar 

  44. ADEL W, BIÇER K E, SEZER M. A novel numerical approach for simulating the nonlinear MHD jeffery-hamel flow problem [J]. International Journal of Applied and Computational Mathematics, 2021, 7(3): 1–15. DOI: https://doi.org/10.1007/s40819-021-01016-3.

    Article  MathSciNet  Google Scholar 

  45. RANA S, MEHMOOD R, BHATTI M M, et al. Swimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface [J]. Journal of Central South University, 2021, 28(11): 3279–3296. DOI: https://doi.org/10.1007/s11771-021-4855-y.

    Article  Google Scholar 

  46. ZHANG Li-jun, BHATTI M M, MICHAELIDES E E, et al. Characterizing quadratic convection and electromagnetically induced flow of couple stress fluids in microchannels [J]. Qualitative Theory of Dynamical Systems, 2024, 23(1): 35. DOI: https://doi.org/10.1007/s12346-023-00883-z.

    Article  MathSciNet  Google Scholar 

  47. TURKYILMAZOGLU M. Extending the traditional Jeffery-Hamel flow to stretchable convergent/divergent channels [J]. Computers & Fluids, 2014, 100: 196–203. DOI: https://doi.org/10.1016/j.compfluid.2014.05.016.

    Article  MathSciNet  Google Scholar 

  48. BUHL J, SUMPTER D J T, COUZIN I D, et al. From disorder to order in marching locusts [J]. Science, 2006, 312(5778): 1402–1406. DOI: https://doi.org/10.1126/science.1125142.

    Article  Google Scholar 

  49. BLUM C, LI Xiao-dong. Swarm intelligence in optimization [M]//Blum C, Merkle D. Swarm Intelligence. Berlin, Heidelberg: Springer, 2008: 43–85. https://doi.org/10.1007/978-3-540-74089-6_2

    Chapter  Google Scholar 

  50. HASHIM F A, HUSSAIN K, HOUSSEIN E H, et al. Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems [J]. Applied Intelligence, 2021, 51(3): 1531–1551. DOI: https://doi.org/10.1007/s10489-020-01893-z.

    Article  Google Scholar 

  51. SADOLLAH A, ESKANDAR H, LEE H M, et al. Water cycle algorithm: A detailed standard code [J]. SoftwareX, 2016, 5: 37–43. DOI: https://doi.org/10.1016/j.softx.2016.03.001.

    Article  Google Scholar 

  52. JIANG Qiao-yong, WANG Lei, HEI Xin-hong. Parameter identification of chaotic systems using artificial raindrop algorithm [J]. Journal of Computational Science, 2015, 8: 20–31. DOI: https://doi.org/10.1016/j.jocs.2015.02.004.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

ASLAM Muhammad Naeem, RIAZ Arshad, SHAUKAT Nadeem, and ALI Shahzad provided the concept and edited the draft of manuscript. AKRAM Safia, and BHATTI M. M. conducted the literature review and wrote the first draft of the manuscript. Safia AKRAM, and M. M. BHATTI edited the draft of the manuscript.

Corresponding author

Correspondence to M. M. Bhatti.

Ethics declarations

ASLAM Muhammad Naeem, RIAZ Arshad, SHAUKAT Nadeem, ALI Shahzad, AKRAM Safia, BHATTI M. M. declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslam, M.N., Riaz, A., Shaukat, N. et al. Analysis of incompressible viscous fluid flow in convergent and divergent channels with a hybrid meta-heuristic optimization techniques in ANN: An intelligent approach. J. Cent. South Univ. 30, 4149–4167 (2023). https://doi.org/10.1007/s11771-023-5514-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-023-5514-2

Key words

关键词

Navigation