Skip to main content
Log in

Correct Use of the Guarded-Hot-Plate Method for Thermal Conductivity Measurements on Solids

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The guarded-hot-plate (GHP) method is a method used world-wide for the determination of the thermal conductivity of solid materials, especially low-conducting insulation materials, based on the direct application of Fourier’s law. It is an absolute method, which means that no reference material is needed, though regular performance checks using reference materials are highly encouraged. All measured quantities are traceable to SI-units. Applying the GHP method in accordance with existing standards, relative uncertainties in the determined values of the thermal conductivity below 2.5% are achievable. This work describes the basic theory of the measurement and is focused on difficulties and possible stumbling blocks in daily measuring practice and laboratory routine when applying the GHP method on specimens which are not or only partly covered by standards. The work explains in which cases the definition of a thermal conductivity value is not possible for a specimen and only system-related values as the thermal resistance can be attributed to a specimen. The aim of this work is to improve the measuring quality of GHP measurements for the determination of the thermal conductivity in daily laboratory operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

© DS 5001X for different mean temperatures and a constant temperature difference ΔT of 5 K

Fig. 12

Similar content being viewed by others

References

  1. J.B.J. Fourier, A. Freeman, The analytical theory of heat. The University press; etc., Cambridge Eng., (1878)

  2. ISO 80000-5:2007, International Organization for Standardization-ISO, (2007)

  3. CGPM, In Conférence Générale des Poids et Mesures (CGPM), Paris, (1967)

  4. I. Mills, T. Cvitas, N. Kallay, K. Kuchitsu, International Union of Pure and Applied Chemistry (IUPAC), London, 1993)

    Google Scholar 

  5. R. Poensgen, Mitteilungen über Forschungsarbeiten auf dem Gebiete des Ingenieurwesens: insbesondere aus den Laboratorien der technischen Hochschulen (Springer, Berlin, 1912), pp.25–40

    Book  Google Scholar 

  6. B. Hay, Measurement 155, 107556 (2020)

    Article  Google Scholar 

  7. T.N. Narasimhan, Phys. Today 63, 36 (2010)

    Article  Google Scholar 

  8. R.R. Zarr, ASHRAE Trans. 107, 661 (2001)

    Google Scholar 

  9. R.R. Zarr, S.M. Bruss, D.L. McElroy, J. Test. Eval. (2019). https://doi.org/10.1520/jte20180652

    Article  PubMed  PubMed Central  Google Scholar 

  10. D.R. Flynn, R.R. Zarr, M.H. Hahn, W.M. Healy, In ASTM Special Technical Publication, ed. by A.O. Desjarlais, R.R. Zarr, Charleston, SC, p. 98–115, (2002)

  11. W. Hemminger, R. Jugel, Int. J. Thermophys. 6, 483 (1985)

    Article  ADS  CAS  Google Scholar 

  12. D. Salmon, Meas. Sci. Technol. 12, R89 (2001)

    Article  ADS  CAS  Google Scholar 

  13. J. Wu, J. Hameury, G. Failleau, A. Blahut, T. Vachova, R. Strnad, M. Krause, E. Rafeld, U. Hammerschmidt, Int. J. Thermophys. 39, 23 (2017)

    Article  ADS  CAS  Google Scholar 

  14. I. Yang, D. Kim, S. Lee, Int. J. Heat Mass Transf. 122, 1343 (2018)

    Article  CAS  Google Scholar 

  15. F. De Ponte, C. Langlais, S. Klarsfeld, Compendium of Thermophysical Property Measurement Methods: Volume 2 Recommended Measurement Techniques and Practices, ed. by K.D. Maglić, A. Cezairliyan, V.E. Peletsky Springer US, Boston, MA, p. 99–131 (1992)

  16. U. Heinemann, J. Hetfleisch, R. Caps, J. Kuhn, J. Fricke, Advances in Thermal Insulations, Eurotherm Seminar No.44, ed. by R.G.C.-. ECEMEI, 4435 Rio Tinto - Portuga l, Espinho - Portugal, p. 155 - 164, (1995)

  17. F.E.B. Bioucas, M.H. Rausch, T.M. Koller, A.P. Fröba, Int. J. Heat Mass Transf. 212, 124283 (2023)

    Article  CAS  Google Scholar 

  18. J. Blumm, G. Neumann, R. Franke, H.P. Ebert, S. Vidi, In 30th International Thermal Conductivity Conference and the 18th International Thermal Expansion Symposium, Thermal Conductivity 30/Thermal Expansion 18 (Pittsburgh, PA, 2010), pp.682–689

    Google Scholar 

  19. ASTM C177-13, American Society for Testing and Materials, (2013)

  20. ASTM E1530-11, ASTM International, (2016)

  21. ISO 8302:1991 International Organization for Standardization-ISO, (1991)

  22. DIN EN 12667, Beuth Verlag GmbH (2001)

  23. J. Wu, R. Morrell, Int. J. Thermophys. 33, 330 (2012)

    Article  ADS  Google Scholar 

  24. U. Hammerschmidt, Int. J. Thermophys. 23, 1551 (2002)

    Article  CAS  Google Scholar 

  25. M. Bomberg, K.R. Solvason, in 17th International Thermal Conductivity Conference, ed. by J.G. Hust Plenum Publishing Corporation, Gaithersburg, MD, p. 393–410, (1981)

  26. R.R. Zarr, J. Test. Eval. 38, 151 (2010)

    CAS  Google Scholar 

  27. I. Yang, D. Kim, Int. J. Heat Mass Transf. 198, 123434 (2022)

    Article  Google Scholar 

  28. H.-P. Ebert, S. Braxmeier, G. Reichenauer, F. Hemberger, F. Lied, D. Weinrich, M. Fricke, Int. J. Thermophys. 42, 21 (2021)

    Article  ADS  CAS  Google Scholar 

  29. S. Vidi, S. Rausch, H.P. Ebert, A. Löhberg, D. Petry, Int. J. Thermophys. 34, 939 (2013)

    Article  ADS  CAS  Google Scholar 

  30. K.D. Antoniadis, A. Tyrou, M.J. Assael, X. Li, J. Wu, H.-P. Ebert, Int. J. Thermophys. 41, 98 (2020)

    Article  ADS  CAS  Google Scholar 

  31. U. Heinemann, R. Caps, J. Fricke, Int. J. Heat Mass Transf. 39, 2115 (1996)

    Article  CAS  Google Scholar 

  32. U. Heinemann, In Fakultät für Physik und Astronomie, Universität Würzburg, Würzburg, p. 108, (1993)

  33. J. Fricke, R. Caps, Int. J. Thermophys. 9, 885 (1988)

    Article  ADS  CAS  Google Scholar 

  34. R. Caps, In Physical Institut, Universtity of Würzbug, Germany, Bayerische Julius-Maximilians-Universität Würzburg, (1985)

  35. W. Fritz, H.-H. Kirchner, Wärme- und Stoffübertragung 6, 7 (1973)

    Article  Google Scholar 

  36. F. Fischer, Kunststoffe 56, (1966)

  37. B. Koglin, TU Berlin, (1967)

  38. W. Fritz, W. Küster, Wärme- und Stoffübertragung (3), (1970)

  39. B. Zalba, J.M. Marin, L.F. Cabeza, H. Mehling, Appl. Therm. Eng. 23, 251 (2003)

    Article  CAS  Google Scholar 

  40. Q.A. PCM, (Quality Association PCM), RAL-GZ 896, http://www.pcm-ral.org/pdf/RAL-GZ_896.pdf (08.11.2023)

  41. VDI Heat Atlas., Springer Berlin, Heidelberg, p XLII, 1584, (2010)

Download references

Acknowledgments

We are particularly grateful to all members of the Advanced Thermal Management working group of the CAE, as well as to all employees who have continuously developed the measurement technology and theory of the GHP method over the past four decades in the Prof. Jochen Fricke’s working group at the Julius-Maximilians-University of Würzburg and at the ZAE Bayern – now CAE – and have laid the basics for this work.

Funding

No funding was received for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally.

Corresponding author

Correspondence to Hans-Peter Ebert.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue on Transport Property Measurements in Research and Industry: Recommended Techniques and Instrumentation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebert, HP., Vidi, S. Correct Use of the Guarded-Hot-Plate Method for Thermal Conductivity Measurements on Solids. Int J Thermophys 45, 20 (2024). https://doi.org/10.1007/s10765-023-03307-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03307-x

Keywords

Navigation