Skip to main content
Log in

Heat Transfer Performance of Copper Foam-Based Vapor Chamber Composite Liquid Cooling System Under Double-Sided Heating

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

To mitigate the temperature distribution gradients on the surface caused by the coolant flowing and heating on both sides, an efficient liquid cooling system is needed to solve the problem of high temperatures in localized regions of the heating surface. A copper foam-based vapor chamber composite cold plate is developed, and its heat thermal performance is experimentally investigated. The evaporation base with the copper foam metal wick is placed on both sides of the cold plate to form vapor chambers. The effects of a range of heating powers and coolant flow rates on the thermal resistance of vapor chambers with different filling ratios on both sides are investigated. The results show that a 0.15 L min−1 coolant flow rate provides excellent heat dissipation, and continuing to increase the flow rate has little impact on the temperature uniformity. The vapor chamber’s 70 % to 80 % filling ratio reflects the best performance in the test heating power range. The structure is easily assembled and suitable for utilization in battery thermal management systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

All the data are available (if requested).

References

  1. L.D. Couto, M. Charkhgard, B. Karaman, N. Job, M. Kinnaert, Energy 263, 125966 (2023). https://doi.org/10.1016/j.energy.2022.125966

    Article  CAS  Google Scholar 

  2. B. Wang, C. Ji, S. Wang, J. Sun, S. Pan, D. Wang, C. Liang, Appl. Therm. Eng. 168, 114831 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114831

    Article  Google Scholar 

  3. Y. Liu, S. Xu, Y. Wang, H. Dong, Int. J. Thermophys. 43, 131 (2022). https://doi.org/10.1007/s10765-022-03058-1

    Article  CAS  ADS  Google Scholar 

  4. M. Al-Zareer, I. Dincer, M.A. Rosen, J. Power Sources. 363, 291–303 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.067

    Article  CAS  ADS  Google Scholar 

  5. D. Burow, K. Sergeeva, S. Calles, K. Schorb, A. Boerger, C. Roth, P. Heitjans, J. Power Sources. 307, 806–814 (2016). https://doi.org/10.1016/j.jpowsour.2016.01.033

    Article  CAS  ADS  Google Scholar 

  6. W. Wu, S. Wang, W. Wu, K. Chen, S. Hong, Y. Lai, Energy Convers. Manag. 182, 262–281 (2019). https://doi.org/10.1016/j.enconman.2018.12.051

    Article  Google Scholar 

  7. H.M. Daraghmeh, C.-C. Wang, Appl. Therm. Eng. 114, 1224–1239 (2017). https://doi.org/10.1016/j.applthermaleng.2016.10.093

    Article  Google Scholar 

  8. B.H.J.W. Han, Int. J. Thermophys. 43, 148 (2022). https://doi.org/10.1007/s10765-022-03088-9

    Article  CAS  ADS  Google Scholar 

  9. J. Chen, S. Kang, E. Jiaqiang, Z. Huang, K. Wei, B. Zhang, H. Zhu, Y. Deng, F. Zhang, G. Liao, J. Power Sources. 442, 227228 (2019). https://doi.org/10.1016/j.jpowsour.2019.227228

    Article  CAS  Google Scholar 

  10. J. Zhao, Z. Rao, Y. Li, Energy Convers. Manag. 103, 157–165 (2015). https://doi.org/10.1016/j.enconman.2015.06.056

    Article  CAS  Google Scholar 

  11. Z. An, K. Shah, L. Jia, Y. Ma, Appl. Therm. Eng. 154, 593–601 (2019). https://doi.org/10.1016/j.applthermaleng.2019.02.088

    Article  Google Scholar 

  12. M. Li, F. Liu, B. Han, J. Guo, Y. Xu, Ionics 27, 2685–2695 (2021). https://doi.org/10.1007/s11581-021-04033-w

    Article  CAS  Google Scholar 

  13. M. Bulut, S.G. Kandlikar, N. Sozbir, Heat Transf. Eng. 40, 1551–1573 (2019). https://doi.org/10.1080/01457632.2018.1480868

    Article  CAS  ADS  Google Scholar 

  14. W. Li, L. Li, W. Cui, M. Guo, Int. J. Heat Mass Transf. 170, 121026 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121026

    Article  CAS  Google Scholar 

  15. H. Wang, P. Bai, R. Cai, Y. Luo, X. Chen, S. Li, G. Wu, Y. Tang, G. Zhou, Energy Convers. Manag. 244, 114499 (2021). https://doi.org/10.1016/j.enconman.2021.114499

    Article  Google Scholar 

  16. S. Lei, Y. Shi, G. Chen, Int. J. Heat Mass Transf. 163, 120494 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120494

    Article  CAS  Google Scholar 

  17. K.L. Lawrence, Comput. Syst. Sci. Eng. 3, 691 (1992). https://doi.org/10.1016/0956-0521(92)90020-J

    Article  Google Scholar 

  18. S.W. Chi, Heat Pipe Theory and Practice (Hemisphere, New York, 1976)

    Google Scholar 

  19. J. Xie, M. Zang, S. Wang, Z. Ge, Proc. Inst. Mech. Eng. Part D (2017). https://doi.org/10.1177/0954407016685457

    Article  Google Scholar 

  20. V. Gnielinski, vol. 16, pp. 359–367 (1976)

  21. G. Huang, W. Liu, Y. Luo, Y. Li, H. Chen, Int. J. Therm. Sci. 170, 107145 (2021). https://doi.org/10.1016/j.ijthermalsci.2021.107145

    Article  Google Scholar 

  22. Z. Zhao, L. Li, Y. Wang, Y. Wang, Y. Hui, AIP Adv. (2023). https://doi.org/10.1063/5.0134402

    Article  Google Scholar 

Download references

Acknowledgement

This work is partly supported by the National Science Foundation of China (NSFC, Grant No.62162035) and Yunnan Fundamental Research Projects (Grant No. CB23031C047A).

Author information

Authors and Affiliations

Authors

Contributions

Z. Securing funding and conducting a thorough review and revision of the initial draft. X. Writing the first draft, which includes substantive translation, and designing the experiments. B. Providing study materials, reagents, and necessary laboratory instrumentation. Y. Collecting and curating data/evidence. C. Managing and coordinating the research activity planning and execution, as well as polishing the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Chuan Luo.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Chen, X., Li, B. et al. Heat Transfer Performance of Copper Foam-Based Vapor Chamber Composite Liquid Cooling System Under Double-Sided Heating. Int J Thermophys 45, 19 (2024). https://doi.org/10.1007/s10765-023-03308-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03308-w

Keywords

Navigation