Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Stimuli-induced NOergic Molecules and Neuropeptides Mediated Axon Reflexes Contribute to Tracers along Meridian Pathways

Author(s): Shengxing Ma*

Volume 24, Issue 5, 2024

Published on: 18 January, 2024

Page: [393 - 400] Pages: 8

DOI: 10.2174/0115680266260220240108114337

Price: $65

Abstract

An abundance of studies from different international groups have demonstrated tracers along linear pathways resembling meridians over the body surface of humans. All experiments of the studies have been conducted by injection of a radiotracer solution or tracer dyes in a volume of solution into acupuncture points (acupoints). The solution injected into acupoints produces much stronger mechanical stimuli than acupuncture, which causes axon reflex. Anatomical studies have demonstrated that acupoints/meridians exist higher number of small nerve fibers and blood vessels with rich nitric oxide (NO) and neuropeptides in the cutaneous tissues as structures for the biomolecules mediated axon reflexes. Recent advances have determined that NO and calcitonin generelated peptides play crucial roles in the comprehension of the axon reflex. The stimuli-evoked axon reflex and NOergic biomolecules/neuropeptides increase local blood flow with higher levels in acupoints/meridians, which move radioactive substances or tracer dyes in the skin and subcutaneous tissue under a linear path resembling acupoints and meridians, the important phenomena of meridians induced by the stimuli. The evidence and understanding of the biomolecular processes of the tracers along linear pathways resembling meridians have been summarized with an emphasis on recent developments of NO and neuropeptides mediating stimuli-evoked axon reflexes to increase local blood flow with higher levels in acupoints/meridians, which move radioactive substances or tracer dyes in the skin and subcutaneous tissue contributing to tracers along linear pathways resembling meridians in this mini-review.

Keywords: Propagated sensation along the meridian, Tracers, Axon reflex, Nitric oxide, Neuropeptides, Biophysical approaches, Acupuncture stimuli, Acupuncture points, Meridian system.

Next »
[1]
Chan, S.H.H. What is being stimulated in acupuncture: Evaluation of the existence of a specific substrate. Neurosci. Biobehav. Rev., 1984, 8(1), 25-33.
[http://dx.doi.org/10.1016/0149-7634(84)90018-6] [PMID: 6328387]
[2]
Wang, G.J.; Ayati, M.H.; Zhang, W.B. Meridian studies in China: A systematic review. J. Acupunct. Meridian Stud., 2010, 3(1), 1-9.
[http://dx.doi.org/10.1016/S2005-2901(10)60001-5] [PMID: 20633509]
[3]
Ma, S. Low electrical resistance properties of acupoints: Roles of NOergic signaling molecules and neuropeptides in skin electrical conductance. Chin. J. Integr. Med., 2021, 27(8), 563-569.
[http://dx.doi.org/10.1007/s11655-021-3318-5] [PMID: 34319572]
[4]
Shanghai Jiao Tong University, Science. 125 Questions: Exploration and discovery | Science | AAAS. 2021. Available from: https://www.science.org/content/resource/125-questions-exploration-and-discovery
[5]
Zhu, Z.X.; Hao, J.K. Acupuncture meridian biophysics-scientific verification of the first great invention of china. Beijing Press: Beijing, 1989; pp. 42-87.
[6]
Yang, M.; Han, J. Review and analysis on the meridian research of China over the past sixty years. Chin. J. Integr. Med., 2015, 21(5), 394-400.
[http://dx.doi.org/10.1007/s11655-015-2168-4] [PMID: 25935144]
[7]
Voll, R. Twenty years of electroacupuncture diagnosis in Germany. A progress report. Am. J. Acup., 1975, 3, 7-17.
[8]
Fraden, J. Active acupuncture point impedance and potential measurements. Am. J. Acup., 1979, 7, 137-144.
[9]
Kovacs, F.M.; Gotzens, V.; García, A.; García, F.; Mufraggi, N.; Prandi, D.; Setoain, J.; San Román, F. Radioactive pathways of hypodermically injected technetium-99m. Am. J. Chin. Med., 1996, 24(1), 101-102.
[PMID: 8739187]
[10]
Pearson, S.; Colbert, A.P.; McNames, J.; Baumgartner, M.; Hammerschlag, R. Electrical skin impedance at acupuncture points. J. Altern. Complement. Med., 2007, 13(4), 409-418.
[http://dx.doi.org/10.1089/acm.2007.6258] [PMID: 17532733]
[11]
Langevin, H.M.; Wayne, P.M. What is the point? The problem with acupuncture research that no one wants to talk about. J. Altern. Complement. Med., 2018, 24(3), 200-207.
[http://dx.doi.org/10.1089/acm.2017.0366] [PMID: 29493256]
[12]
Luciani, R.J. Direct observation and photography of electroconductive points on human skin. Am. J. Acup., 1978, 6, 311-317.
[13]
Monteiro-Riviere, N.A.; Hwang, Y.C.; Stromberg, M.W. Light microscopic morphology of low resistance skin points in the guinea pig. Am. J. Chin. Med., 1981, 9(2), 155-163.
[http://dx.doi.org/10.1142/S0192415X81000196] [PMID: 7345920]
[14]
Chen, J.X.; Ma, S.X. Effects of nitric oxide and noradrenergic function on skin electric resistance of acupoints and meridians. J. Altern. Complement. Med., 2005, 11(3), 423-431.
[http://dx.doi.org/10.1089/acm.2005.11.423] [PMID: 15992225]
[15]
Chen, J.X.; Ibe, B.O.; Ma, S.X. Nitric oxide modulation of norepinephrine production in acupuncture points. Life Sci., 2006, 79(23), 2157-2164.
[http://dx.doi.org/10.1016/j.lfs.2006.07.009] [PMID: 16890244]
[16]
Kim, D.H.; Ryu, Y.; Hahm, D.H.; Sohn, B.Y.; Shim, I.; Kwon, O.S.; Chang, S.; Gwak, Y.S.; Kim, M.S.; Kim, J.H.; Lee, B.H.; Jang, E.Y.; Zhao, R.; Chung, J.M.; Yang, C.H.; Kim, H.Y. Acupuncture points can be identified as cutaneous neurogenic inflammatory spots. Sci. Rep., 2017, 7(1), 15214.
[http://dx.doi.org/10.1038/s41598-017-14359-z] [PMID: 29123119]
[17]
Fan, Y.; Kim, D.H.; Ryu, Y.; Chang, S.; Lee, B.H.; Yang, C.H.; Kim, H.Y. Neuropeptides SP and CGRP underlie the electrical properties of acupoints. Front. Neurosci., 2018, 12, 907.
[http://dx.doi.org/10.3389/fnins.2018.00907] [PMID: 30618546]
[18]
Abraham, T.S.; Chen, M.L.; Ma, S.X. TRPV1 expression in acupuncture points: Response to electroacupuncture stimulation. J. Chem. Neuroanat., 2011, 41(3), 129-136.
[http://dx.doi.org/10.1016/j.jchemneu.2011.01.001] [PMID: 21256210]
[19]
Ji, B.; Hu, J.; Ma, S. Effects of electroacupuncture Zusanli (ST36) on food intake and expression of POMC and TRPV1 through afferents-medulla pathway in obese prone rats. Peptides, 2013, 40, 188-194.
[http://dx.doi.org/10.1016/j.peptides.2012.10.009] [PMID: 23116614]
[20]
Chen, H.C.; Chen, M.Y.; Hsieh, C.L.; Wu, S.Y.; Hsu, H.C.; Lin, Y.W. TRPV1 is a responding channel for acupuncture manipulation in mice peripheral and central nerve system. Cell. Physiol. Biochem., 2018, 49(5), 1813-1824.
[http://dx.doi.org/10.1159/000493627] [PMID: 30231245]
[21]
Jou, N.T.; Ma, S.X. Responses of nitric oxide-cGMP release in acupuncture point to electroacupuncture in human skin in vivo using dermal microdialysis. Microcirculation, 2009, 16(5), 434-443.
[http://dx.doi.org/10.1080/10739680902915012] [PMID: 19468961]
[22]
Kimura, K.; Takeuchi, H.; Yuri, K.; Wakayama, I. Effects of nitric oxide synthase inhibition on cutaneous vasodilation in response to acupuncture stimulation in humans. Acupunct. Med., 2013, 31(1), 74-80.
[http://dx.doi.org/10.1136/acupmed-2012-010177] [PMID: 23076431]
[23]
Ma, S.X.; Mayer, E.; Lee, P.; Li, X.Y.; Gao, E.Z. Transcutaneous electrical nerve stimulation increased nitric oxide-cyclic cGMP release biocaptured over skin surface of the pericardium meridian and acupuncture points in humans. Acup & Electro-Therapeutics Res. Int. J., 2015, 40, 73-86.
[PMID: 26369251]
[24]
Ma, S.X.; Lee, P.C.; Anderson, T.L.; Li, X.Y.; Jiang, I.Z. Response of local nitric oxide release to manual acupuncture and electrical heat in humans: Effects of reinforcement methods. Evid. Based Complement. Alternat. Med., 2017, 2017, 1-8.
[http://dx.doi.org/10.1155/2017/4694238] [PMID: 28717380]
[25]
Guo, Z.L.; Fu, L.W.; Su, H.F.; Tjen-A-Looi, S.C.; Longhurst, J.C. Role of TRPV1 in acupuncture modulation of reflex excitatory cardiovascular responses. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2018, 314(5), R655-R666.
[http://dx.doi.org/10.1152/ajpregu.00405.2017] [PMID: 29351423]
[26]
Schmelz, M.; Michael, K.; Weidner, C.; Schmidt, R.; orebjörk, H.E.; Handwerker, H.O. Which nerve fibers mediate the axon reflex flare in human skin? Neuroreport, 2000, 11(3), 645-648.
[http://dx.doi.org/10.1097/00001756-200002280-00041] [PMID: 10718329]
[27]
Wallengren, J.; Håkanson, R. Effects of substance P, neurokinin A and calcitonin gene-related peptide in human skin and their involvement in sensory nerve-mediated responses. Eur. J. Pharmacol., 1987, 143(2), 267-273.
[http://dx.doi.org/10.1016/0014-2999(87)90542-5] [PMID: 2446892]
[28]
Hodges, G.J.; Kosiba, W.A.; Zhao, K.; Johnson, J.M. The involvement of norepinephrine, neuropeptide Y, and nitric oxide in the cutaneous vasodilator response to local heating in humans. J. Appl. Physiol., 2008, 105(1), 233-240.
[http://dx.doi.org/10.1152/japplphysiol.90412.2008] [PMID: 18483164]
[29]
Kellogg, D.L., Jr; Liu, Y.; Kosiba, I.F.; O’Donnell, D. Role of nitric oxide in the vascular effects of local warming of the skin in humans. J. Appl. Physiol., 1999, 86(4), 1185-1190.
[http://dx.doi.org/10.1152/jappl.1999.86.4.1185] [PMID: 10194201]
[30]
Magerl, W.; Treede, R.D. Heat-evoked vasodilatation in human hairy skin: axon reflexes due to low-level activity of nociceptive afferents. J. Physiol., 1996, 497(3), 837-848.
[http://dx.doi.org/10.1113/jphysiol.1996.sp021814] [PMID: 9003568]
[31]
Xu, J.; Zheng, S.; Pan, X.; Zhu, X.; Hu, X. The existence of propagated sensation along the meridian proved by neuroelectrophysiology. Neural Regen. Res., 2013, 8(28), 2633-2640.
[PMID: 25206574]
[32]
Razavy, S.; Gadau, M.; Zhang, S.P.; Wang, F.C.; Bangrazi, S.; Berle, C.; Harahap, M.; Li, T.; Li, W.H.; Zaslawski, C. Investigation of the phenomenon of propagated sensation along the channels in the upper limb following administration of acupuncture and mock laser. J. Acupunct. Meridian Stud., 2017, 10(5), 307-316.
[http://dx.doi.org/10.1016/j.jams.2017.06.007] [PMID: 29078965]
[33]
Kovacs, F.M.; Gotzens, V.; García, A.; García, F.; Mufraggi, N.; Prandi, D.; Setoain, J.; San Román, F. Experimental study on radioactive pathways of hypodermically injected technetium-99m. J. Nucl. Med., 1992, 33(3), 403-407.
[PMID: 1740711]
[34]
Kovacs, F.M.; Gotzens, V.; García, A.; García, F.; Mufraggi, N.; Prandi, D.; Setoain, J.; San Román, F. Kinetics of hypodermically injected technetium-99m and correlation with cutaneous structures: an experimental study in dogs. Eur. J. Nucl. Med., 1993, 20(7), 585-590.
[http://dx.doi.org/10.1007/BF00176552] [PMID: 8396531]
[35]
Kovacs, F.M.; García, A.; Mufraggi, N.; García, F.; Pavía, J.; Prandi, D.; Gotzens, V.; Giralt, I.; Piera, C.; Setoain, J. Migration pathways of hypodermically injected technetium-99m in dogs. Eur. Radiol., 2000, 10(6), 1019-1025.
[http://dx.doi.org/10.1007/s003300051056] [PMID: 10879722]
[36]
Wu, C.C.; Jong, S.B.; Lin, C.C.; Chen, M.F.; Chen, J.R.; Chung, C. Subcutaneous injection of 99mTc pertechnetate at acupuncture points K-3 and B-60. Radioisotopes, 1990, 39(6), 261-263.
[http://dx.doi.org/10.3769/radioisotopes.39.6_261] [PMID: 2168571]
[37]
Wu, C.C.; Chen, M.F.; Lin, C.C. Absorption of subcutaneous injection of Tc-99m pertechnetate via acupuncture points and non-acupuncture points. Am. J. Chin. Med., 1994, 22(2), 111-118.
[http://dx.doi.org/10.1142/S0192415X94000140] [PMID: 7992810]
[38]
Chen, M.F.; Wu, C.C.; Jong, S.B.; Lin, C.C. Differences in acupuncture point SP-10 and non-acupuncture point following subcutaneous injection of Tc-99m pertechnetate. Am. J. Chin. Med., 1993, 21(03n04), 221-229.
[http://dx.doi.org/10.1142/S0192415X9300025X] [PMID: 8135165]
[39]
Tiberiu, R.; Gheorge, G.; Popescu, S.I. Do meridians of acupuncture exist? A radioactive tracer study of the bladder meridian. Am. J. Acupunct., 1981, 9, 251-256.
[40]
Meng, J.B.; Gao, H.H.; Wang, P.; Tian, J.H.; Liu, Y.L. Primary approach to visualize the courses of channels by use of isotope. Acu. Res., 1987, 1, 77-81.
[41]
Lazorthes, Y.; Esquerré, J.P.; Simon, J.; Guiraud, G.; Guiraud, R. Acupuncture meridians and radiotracers. Pain, 1990, 40(1), 109-112.
[http://dx.doi.org/10.1016/0304-3959(90)91058-Q] [PMID: 2339006]
[42]
Zhang, W.B.; Tian, Y.Y.; Li, H.; Tian, J.H.; Luo, M.F.; Xu, F.L.; Wang, G.J.; Huang, T.; Xu, Y.H.; Wang, R.H. A discovery of low hydraulic resistance channel along meridians. J. Acupunct. Meridian Stud., 2008, 1(1), 20-28.
[http://dx.doi.org/10.1016/S2005-2901(09)60003-0] [PMID: 20633451]
[43]
Zhang, W.B.; Wang, G.J.; Fuxe, K. Classic and modern meridian studies: A review of low hydraulic resistance channels along meridians and their relevance for therapeutic effects in traditional Chinese medicine. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-14.
[http://dx.doi.org/10.1155/2015/410979] [PMID: 25821487]
[44]
Li, H.Y.; Wang, Z.; Xiong, F.; Wang, G.J.; Song, X.J.; Jia, S.Y.; Gu, X.; Zhang, W.B. Preliminary observation of the migration of sodium fluorescein along meridians in the limbs of mini-pigs. Zhongguo Ke Xue, 2020, 50(12), 1453-1463.
[http://dx.doi.org/10.1360/SSV-2020-0144]
[45]
Li, H.; Chen, M.; Yang, J.; Yang, C.; Xu, L.; Wang, F.; Tong, J.; Lv, Y.; Suonan, C. Fluid flow along venous adventitia in rabbits: Is it a potential drainage system complementary to vascular circulations? PLoS One, 2012, 7(7), e41395.
[http://dx.doi.org/10.1371/journal.pone.0041395] [PMID: 22848483]
[46]
Gu, X.; Wang, Y.P.; Wang, G.J.; Song, X.J.; Jia, S.Y.; Li, H.Y.; Ye, F.Y.; Xiong, F.; Wei Bo Zhang, W.B. in vivo display of low hydraulic resistance channels along conception vessel in rats by photofluorography. Acup. Res., 2020, 45, 227-232.
[PMID: 32202715]
[47]
Ma, W.; Tong, H.; Xu, W.; Hu, J.; Liu, N.; Li, H.; Cao, L. Perivascular space: possible anatomical substrate for the meridian. J. Altern. Complement. Med., 2003, 9(6), 851-859.
[http://dx.doi.org/10.1089/107555303771952208] [PMID: 14736357]
[48]
Li, H.Y.; Yang, J.F.; Chen, M.; Xu, L.; Wang, W.C.; Wang, F.; Tong, J.B.; Wang, C.Y. Visualized regional hypodermic migration channels of interstitial fluid in human beings: are these ancient meridians? J. Altern. Complement. Med., 2008, 14(6), 621-628.
[http://dx.doi.org/10.1089/acm.2007.0606] [PMID: 18684070]
[49]
Li, T.; Tang, B.Q.; Zhang, W.B.; Zhao, M.Y.; Hu, Q.C.; Ahn, A. in-vivo visualization of pericardium meridian with fluorescent dyes. Evid. Based Complement Alternat. Med, 2021.
[http://dx.doi.org/10.1155/2021/5581227]
[50]
Izumi, H.; Karita, K. Axon reflex vasodilatation in human skin measured by a laser Doppler technique. Jpn. J. Physiol., 1991, 41(5), 693-702.
[http://dx.doi.org/10.2170/jjphysiol.41.693] [PMID: 1724990]
[51]
Sharara, A.M.; Higham, M.A.; Iredale, M.J.; Ind, P.W. Intradermal actions of hypertonic saline involve neural and vascular mechanisms. Br. J. Clin. Pharmacol., 1995, 40(1), 98-100.
[http://dx.doi.org/10.1111/j.1365-2125.1995.tb04544.x] [PMID: 8527278]
[52]
Huang, R.; Xu, S.; Li, D.; Xie, X. Acupoint injection treatment for primary osteoporosis. Medicine, 2019, 98(32), e16735.
[http://dx.doi.org/10.1097/MD.0000000000016735] [PMID: 31393383]
[53]
Sha, T.; Gao, L.L.; Zhang, C.H.; Zheng, J.G.; Meng, Z.H. An update on acupuncture point injection. QJM: An Intern. J Med., 2016, 109(10), 639-641.
[http://dx.doi.org/10.1093/qjmed/hcw055] [PMID: 27083985]
[54]
Park, K.M.; Cho, T.H. Therapeutic effect of acupuncture point injection with placental extract in knee osteoarthritis. J. Integr. Med., 2017, 15(2), 135-141.
[http://dx.doi.org/10.1016/S2095-4964(17)60316-9] [PMID: 28285618]
[55]
Steinhoff, M.; Ständer, S.; Seeliger, S.; Ansel, J.C.; Schmelz, M.; Luger, T. Modern aspects of cutaneous neurogenic inflammation. Arch. Dermatol., 2003, 139(11), 1479-1488.
[http://dx.doi.org/10.1001/archderm.139.11.1479] [PMID: 14623709]
[56]
Hassan, A.A.K.; Rayman, G.; Tooke, J.E. Effect of indirect heating on the postural control of skin blood flow in the human foot. Clin. Sci., 1986, 70(6), 577-582.
[http://dx.doi.org/10.1042/cs0700577] [PMID: 3519056]
[57]
Ma, S.X. Enhanced nitric oxide concentrations and expression of nitric oxide synthase in acupuncture points/meridians. J. Altern. Complement. Med., 2003, 9(2), 207-215.
[http://dx.doi.org/10.1089/10755530360623329] [PMID: 12804074]
[58]
Ma, S.X.; Ma, J.; Moise, G.; Li, X.Y. Responses of neuronal nitric oxide synthase expression in the brainstem to electroacupuncture Zusanli (ST 36) in rats. Brain Res., 2005, 1037(1-2), 70-77.
[http://dx.doi.org/10.1016/j.brainres.2004.12.029] [PMID: 15777754]
[59]
Ma, S. Nitric oxide signaling molecules in acupoints: Toward mechanisms of acupuncture. Chin. J. Integr. Med., 2017, 23(11), 812-815.
[http://dx.doi.org/10.1007/s11655-017-2789-x] [PMID: 29080196]
[60]
Xiong, K.; Li, H.; Wang, T. Origin of nitric oxide synthase positive nerve fibers at zusanli area in rats. Zhongguo Zhong Xi Yi Jie He Za Zhi, 1998, 18, 230-232.
[PMID: 11475749]
[61]
Lefaucheur, J.P. Assessment of autonomic nervous system dysfunction associated with peripheral neuropathies in the context of clinical neurophysiology practice. Neurophysiol. Clin., 2023, 53(2), 102858.
[http://dx.doi.org/10.1016/j.neucli.2023.102858] [PMID: 36966708]
[62]
Siepmann, T.; Arndt, M.; Sedghi, A.; Szatmári, S., Jr; Horváth, T.; Takáts, A.; Bereczki, D.; Moskopp, M.L.; Buchmann, S.; Skowronek, C.; Zago, W.; Woranush, W.; Lapusca, R.; Weidemann, M.L.; Gibbons, C.H.; Freeman, R.; Reichmann, H.; Puetz, V.; Barlinn, K.; Pintér, A.; Illigens, B.M.W. TWO-YEAR observational study of autonomic skin function in patients with Parkinson’s disease compared to healthy individuals. Eur. J. Neurol., 2023, 30(5), 1281-1292.
[http://dx.doi.org/10.1111/ene.15733] [PMID: 36773001]
[63]
Korr, I.M.; Thomas, P.E.; Wright, H.M. Patterns of electrical skin resistance in man. J. Neural Transm., 1958, 17(1-2), 77-96.
[http://dx.doi.org/10.1007/BF01234166] [PMID: 13532588]
[64]
Smith, G.B.; Wilson, G.R.; Curry, C.H.; May, S.N.; Arthurson, G.M.; Robinson, D.A.; Cross, G.D. Predicting successful brachial plexus block using changes in skin electrical resistance. Br. J. Anaesth., 1988, 60(6), 703-708.
[http://dx.doi.org/10.1093/bja/60.6.703] [PMID: 3377954]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy