Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Molecular Determination of Tumor Necrosis Factor-alpha, Interleukin-8, Interleukin-10, and C-X-C Chemokine Receptor-2 Genetic Variations and their Association with Disease Susceptibility and Mortality in COVID-19 Patients

Author(s): Badr A. Alsayed, Rashid Mir*, Mohammad M. Mir, Tarig M.S. Alnour, Shereen Fawzy, Mesaik M. Ahmed and Dnyanesh Amle

Volume 25, Issue 1, 2024

Published on: 17 January, 2024

Page: [12 - 25] Pages: 14

DOI: 10.2174/0113892029272497240103052359

Price: $65

Abstract

Background: Altered cytokine levels have been associated with poor outcomes among COVID-19 patients. TNF-α, IL-8 and IL-10 are key cytokines in COVID-19 pathogenesis, and CXCR-2 is a major chemokine receptor involved in inflammatory response. Polymorphisms in the genes of these proteins are proposed to influence disease outcomes. In this study, we aimed to find out the association of genetic polymorphisms in TNF-α, IL-8, IL-10 and CXCR-2 genes with susceptibility to and mortality of COVID-19.

Methods: The present case-control study was conducted on 230 subjects, among whom 115 were clinically diagnosed and RT-PCR-confirmed COVID-19 patients and 115 healthy control subjects. The polymorphisms in TNFα -308 G>A (rs1800629), IL-8 -251T>A (rs4073), CXCR2 +785 C>T (rs2230054) genes were detected by ARMS -PCR assay whereas for IL-10 (-1082 G>A), rs1800896 G>A allele-specific PCR assay was used and their association with COVID-19 susceptibility and mortality was estimated by multivariate analysis. The results were analyzed for risk of infection and mortality through different inheritance models.

Results: Frequencies of TNF-α rs1800629 GA, AA, IL-8 rs4073 TA, AA, IL-10 (-1082 G>A), rs1800896 GA and GG, and CXCR2 rs2230054 CT genotypes were significantly higher in COVID-19 patients compared to the control group (p < 0.05). Furthermore, COVID-19 patients had a higher frequency of the polymorphic A allele of TNF-α, the A allele of IL-8, the G allele of IL-10, and the T allele of CXCR2. The risk of susceptibility to COVID-19 was significantly associated with TNF-α rs1800629 GA, GA+AA genotypes and the A allele, IL-8 rs4073 TA, AA genotypes and A allele, IL-10 rs1800872 GA and CC genotypes and C allele, and CXCR2 rs2230054 CT and CT+CC genotypes. TNF-α-GA and AA genotypes and A allele, IL-8 TA and AA genotypes and A allele and CXCR-2 CC and CT genotypes have significant associations with mortality risk in COVID-19 patients, while GA and GG genotypes of the IL-10 are shown to confer significant protection against mortality from COVID-19.

Conclusion: The findings of this study provide important insights into the COVID-19 disease and susceptibility risk. The polymorphisms in TNFα -308 G>A (rs1800629), IL-8 -251T>A (rs4073), IL-10 (-1082 G>A), rs1800896 and CXCR2 +785 C>T (rs2230054) are associated with the risk of susceptibility to COVID-19 and with mortality in COVID-19 patients. Further studies with larger sample sizes are necessary to confirm our findings.

Keywords: Coronavirus disease-2019 (COVID-19), interleukin 8 (IL-8), tumor necrosis factor alpha (TNF-α), interleukin 10 (IL-10), CXC chemokine receptor-2 (CXCR-2), genetic polymorphisms.

Graphical Abstract
[1]
Available from: https://covid19.who.int/data Assessed 09/04/2023.
[2]
Mohamadian, M.; Chiti, H.; Shoghli, A.; Biglari, S.; Parsamanesh, N.; Esmaeilzadeh, A. COVID-19: Virology, biology and novel laboratory diagnosis. J. Gene Med., 2021, 23(2), e3303.
[http://dx.doi.org/10.1002/jgm.3303] [PMID: 33305456]
[3]
M, Shankar-Hari .; CL, Vale.; PJ, Godolphin .; D, Fisher .; JPT, Higgins .; F, Spiga .; J, Savovic .; J, Tierney .; G, Baron .; JS, Benbenishty .; LR, Berry .; N, Broman .; Cavalcanti Association between administration of il-antagonists and mortality among patients hospitalized for COVID-19: A meta-analysis. WHO rapid evidence appraisal for COVID-19 therapies (REACT) working group. JAMA, 2021, 326(6), 499-518.
[http://dx.doi.org/10.1001/jama.2021.11330] [PMID: 34228774]
[4]
Tang, Y.; Liu, J.; Zhang, D.; Xu, Z.; Ji, J.; Wen, C. Cytokine storm in COVID-19: The current evidence and treatment strategies. Front. Immunol., 2020, 11, 1708.
[http://dx.doi.org/10.3389/fimmu.2020.01708] [PMID: 32754163]
[5]
Wang, Y.; Wu, Y.; Xing, Q.; Chu, N.; Shen, L.; Yu, X.; Wang, L. Genetic association of polymorphism rs2230054 in CXCR2 gene with gout in Chinese Han male population. Cent. Eur. J. Immunol., 2020, 45(1), 80-85.
[http://dx.doi.org/10.5114/ceji.2020.94702] [PMID: 32425684]
[6]
Vakil, M.K.; Mansoori, Y.; Al-Awsi, G.R.L.; Hosseinipour, A.; Ahsant, S.; Ahmadi, S.; Ekrahi, M.; Montaseri, Z.; Pezeshki, B.; Mohaghegh, P.; Sohrabpour, M.; Bahmanyar, M.; Daraei, A.; Dadkhah Jouybari, T.; Tavassoli, A.; Ghasemian, A. Individual genetic variability mainly of Proinflammatory cytokines, cytokine receptors, and toll-like receptors dictates pathophysiology of COVID-19 disease. J. Med. Virol., 2022, 94(9), 4088-4096.
[http://dx.doi.org/10.1002/jmv.27849] [PMID: 35538614]
[7]
Rice, C.M.; Lewis, P.; Ponce-Garcia, F.M.; Gibbs, W.; Groves, S.; Cela, D.; Hamilton, F.; Arnold, D.; Hyams, C.; Oliver, E.; Barr, R.; Goenka, A.; Davidson, A.; Wooldridge, L.; Finn, A.; Rivino, L.; Amulic, B. Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Sci. Alliance, 2023, 6(2), e202201658.
[http://dx.doi.org/10.26508/lsa.202201658] [PMID: 36622345]
[8]
Hsing, A.W.; Sakoda, L.C.; Rashid, A.; Andreotti, G.; Chen, J.; Wang, B.S.; Shen, M.C.; Chen, B.E.; Rosenberg, P.S.; Zhang, M.; Niwa, S.; Chu, L.; Welch, R.; Yeager, M.; Fraumeni, J.F., Jr; Gao, Y.T.; Chanock, S.J. Variants in inflammation genes and the risk of biliary tract cancers and stones: A population-based study in China. Cancer Res., 2008, 68(15), 6442-6452.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-0444] [PMID: 18676870]
[9]
Karakas Celik, S.; Cakmak Genc, G.; Dursun, A. A bioinformatic approach to investigating cytokine genes and their receptor variants in relation to COVID-19 progression. Int. J. Immunogenet., 2021, 48(2), 211-218.
[http://dx.doi.org/10.1111/iji.12522] [PMID: 33246355]
[10]
van Heel, D.A.; Udalova, I.A.; De Silva, A.P.; McGovern, D.P.; Kinouchi, Y.; Hull, J.; Lench, N.J.; Cardon, L.R.; Carey, A.H.; Jewell, D.P.; Kwiatkowski, D. Inflammatory bowel disease is associated with a TNF polymorphism that affects an interaction between the OCT1 and NF-kappaB transcription factors. Hum. Mol. Genet., 2002, 11(11), 1281-1289.
[http://dx.doi.org/10.1093/hmg/11.11.1281] [PMID: 12019209]
[11]
Fan, W.; Maoqing, W.; Wangyang, C.; Fulan, H.; Dandan, L.; Jiaojiao, R.; Xinshu, D.; Binbin, C.; Yashuang, Z. Relationship between the polymorphism of tumor necrosis factor-α-308 G>A and susceptibility to inflammatory bowel diseases and colorectal cancer: A meta-analysis. Eur. J. Hum. Genet., 2011, 19(4), 432-437.
[http://dx.doi.org/10.1038/ejhg.2010.159] [PMID: 21248737]
[12]
Agliardi, C.; Guerini, F.R.; Zanzottera, M.; Riboldazzi, G.; Zangaglia, R.; Bono, G.; Casali, C.; Di Lorenzo, C.; Pacchetti, C.; Nemni, R.; Clerici, M. TNF-α − 308 G/A and − 238 G/A promoter polymorphisms and sporadic Parkinson’s disease in an Italian cohort. J. Neurol. Sci., 2018, 385, 45-48.
[http://dx.doi.org/10.1016/j.jns.2017.12.011] [PMID: 29406912]
[13]
Heidari Nia, M.; Rokni, M.; Mirinejad, S.; Kargar, M.; Rahdar, S.; Sargazi, S.; Sarhadi, M.; Saravani, R. Association of polymorphisms in tumor necrosis factors with SARS-CoV-2 infection and mortality rate: A case-control study and in silico analyses. J. Med. Virol., 2022, 94(4), 1502-1512.
[http://dx.doi.org/10.1002/jmv.27477] [PMID: 34821383]
[14]
Saleh, A.; Sultan, A.; Elashry, M.A.; Farag, A.; Mortada, M.I.; Ghannam, M.A.; Saed, A.M.; Ghoneem, E. Association of TNF-α G-308 a promoter polymorphism with the course and outcome of COVID-19 patients. Immunol. Invest., 2022, 51(3), 546-557.
[http://dx.doi.org/10.1080/08820139.2020.1851709] [PMID: 33228423]
[15]
Schultheiß, C.; Willscher, E.; Paschold, L.; Gottschick, C.; Klee, B.; Henkes, S.S.; Bosurgi, L.; Dutzmann, J.; Sedding, D.; Frese, T.; Girndt, M.; Höll, J.I.; Gekle, M.; Mikolajczyk, R.; Binder, M. The IL-1β, IL-6, and TNF cytokine triad is associated with post-acute sequelae of COVID-19. Cell Rep. Med., 2022, 3(6), 100663.
[http://dx.doi.org/10.1016/j.xcrm.2022.100663] [PMID: 35732153]
[16]
Zhang, S.; Gao, Y.; Huang, J. Interleukin-8 gene− 251 A/T (rs4073) polymorphism and coronary artery disease risk: A meta-analysis. Med. Sci. Monit., 2019, 25, 1645-1655.
[http://dx.doi.org/10.12659/MSM.913591] [PMID: 30826813]
[17]
Li, L.; Li, J.; Gao, M.; Fan, H.; Wang, Y.; Xu, X.; Chen, C.; Liu, J.; Kim, J.; Aliyari, R.; Zhang, J.; Jin, Y.; Li, X.; Ma, F.; Shi, M.; Cheng, G.; Yang, H. Interleukin-8 as a biomarker for disease prognosis of coronavirus disease-2019 patients. Front. Immunol., 2021, 11, 602395.
[http://dx.doi.org/10.3389/fimmu.2020.602395] [PMID: 33488599]
[18]
Cesta, M.C.; Zippoli, M.; Marsiglia, C.; Gavioli, E.M.; Mantelli, F.; Allegretti, M.; Balk, R.A. The role of interleukin-8 in lung inflammation and injury: Implications for the management of COVID-19 and hyperinflammatory acute respiratory distress syndrome. Front. Pharmacol., 2022, 12, 808797.
[http://dx.doi.org/10.3389/fphar.2021.808797] [PMID: 35095519]
[19]
Melanie, C.M.; Justine, A.E.; Joan, R. Association of IL8, CXCR2 and TNF-α polymorphisms and airway disease. In: J. Hum. Genet; , 2006; 51(3), pp. 196-203.
[20]
Li, J.; Rong, L.; Cui, R.; Feng, J.; Jin, Y.; Chen, X.; Xu, R. Dynamic changes in serum IL-6, IL-8, and IL-10 predict the outcome of ICU patients with severe COVID-19. Ann. Palliat. Med., 2021, 10(4), 3706-3714.
[http://dx.doi.org/10.21037/apm-20-2134] [PMID: 33615814]
[21]
D’Rozario, R.; Raychaudhuri, D.; Bandopadhyay, P.; Sarif, J.; Mehta, P.; Liu, C.S.C.; Sinha, B.P.; Roy, J.; Bhaduri, R.; Das, M.; Bandyopadhyay, S.; Paul, S.R.; Chatterjee, S.; Pandey, R.; Ray, Y.; Ganguly, D. Circulating interleukin-8 dynamics parallels disease course and is linked to clinical outcomes in severe COVID-19. Viruses, 2023, 15(2), 549.
[http://dx.doi.org/10.3390/v15020549] [PMID: 36851762]
[22]
Xie, Y.; Kuang, W.; Wang, D.; Yuan, K.; Yang, P. Expanding role of CXCR2 and therapeutic potential of CXCR2 antagonists in inflammatory diseases and cancers. Eur. J. Med. Chem., 2023, 250, 115175.
[http://dx.doi.org/10.1016/j.ejmech.2023.115175] [PMID: 36780833]
[23]
Qi, Y.; Li, C.; Du, Y.; Lin, J.; Li, N.; Yu, Y. Chemokine receptor 2 (CXCR2) gene polymorphisms and their association with the risk of developing peri-implantitis in Chinese Han population. J. Inflamm. Res., 2021, 14, 1625-1631.
[http://dx.doi.org/10.2147/JIR.S304261] [PMID: 33935510]
[24]
O’Garra, A.; Barrat, F.J.; Castro, A.G.; Vicari, A.; Hawrylowicz, C. Strategies for use of IL-10 or its antagonists in human disease. Immunol. Rev., 2008, 223(1), 114-131.
[http://dx.doi.org/10.1111/j.1600-065X.2008.00635.x] [PMID: 18613832]
[25]
Almolakab, Z.M.; El-Nesr, K.A.; Mohamad Hassanin, E.H.; Elkaffas, R.; Nabil, A. Gene polymorphisms of interleukin 6 (−174 G/C) and transforming growth factor β-1(+915 G/C) in ovarian cancer patients. Beni. Suef Univ. J. Basic Appl. Sci., 2022, 11(1), 30.
[http://dx.doi.org/10.1186/s43088-022-00211-5]
[26]
Abbood, S.J.A.; Anvari, E.; Fateh, A. Association between interleukin-10 gene polymorphisms (rs1800871, rs1800872, and rs1800896) and severity of infection in different SARS-CoV-2 variants. Hum. Genomics, 2023, 17(1), 19.
[http://dx.doi.org/10.1186/s40246-023-00468-6] [PMID: 36882862]
[27]
de Brito, R.C.C.M.; Lucena-Silva, N.; Torres, L.C.; Luna, C.F.; Correia, J.B.; da Silva, G.A.P. The balance between the serum levels of IL-6 and IL-10 cytokines discriminates mild and severe acute pneumonia. BMC Pulm. Med., 2016, 16(1), 170.
[http://dx.doi.org/10.1186/s12890-016-0324-z] [PMID: 27905908]
[28]
Rizvi, S.; Rizvi, S.M.S.; Raza, S.T.; Abbas, M.; Fatima, K.; Zaidi, Z.H.; Mahdi, F. Implication of single nucleotide polymorphisms in Interleukin-10 gene (rs1800896 and rs1800872) with severity of COVID-19. Egypt. J. Med. Hum. Genet., 2022, 23(1), 145.
[http://dx.doi.org/10.1186/s43042-022-00344-3] [PMID: 37521849]
[29]
Galley, H.F.; Lowe, P.R.; Carmichael, R.L.; Webster, N.R. Genotype and interleukin-10 responses after cardiopulmonary bypass. Br. J. Anaesth., 2003, 91(3), 424-426.
[http://dx.doi.org/10.1093/bja/aeg174] [PMID: 12925485]
[30]
Keshtkari, A.; Hedayati, F.; Hosseini, E.; Masnavi, E.; Hassanzadeh, S. Analysis of Il-10 rs1800872 polymorphism in relation to Rheumatoid arthritis patients in south of Iran. J Clinic Care Skills., 2022, 3, 1-7.
[31]
Moawadh, M.S.; Mir, R.; Tayeb, F.J.; Asim, O.; Ullah, M.F. Molecular evaluation of the impact of polymorphic variants in apoptotic (Bcl-2/Bax) and proinflammatory cytokine (TNF-α/IL-8) genes on the susceptibility and progression of myeloproliferative neoplasms: A case-control biomarker study. Curr. Issues Mol. Biol., 2023, 45(5), 3933-3952.
[http://dx.doi.org/10.3390/cimb45050251] [PMID: 37232720]
[32]
Talaat, R.M.; Mohamed, Y.A.; Mohamad, E.H.; Elsharkawy, M.; Guirgis, A.A. Interleukin 10 (− 1082 G/A) and (− 819 C/T) gene polymorphisms in Egyptian women with polycystic ovary syndrome (PCOS). Meta Gene, 2016, 9, 254-258.
[http://dx.doi.org/10.1016/j.mgene.2016.08.001]
[33]
Goel, D.; Kumar, S. Co-morbid conditions in COVID-19 patients in Uttarakhand state of India. J. Glob. Health, 2021, 11, 03029.
[http://dx.doi.org/10.7189/jogh.11.03029] [PMID: 33692884]
[34]
Dessie, Z.G.; Zewotir, T. Mortality-related risk factors of COVID-19: A systematic review and meta-analysis of 42 studies and 423,117 patients. BMC Infect. Dis., 2021, 21(1), 855.
[http://dx.doi.org/10.1186/s12879-021-06536-3] [PMID: 34418980]
[35]
Sotomayor-Lugo, F.; Alemañy-Díaz Perera, C.; Roblejo-Balbuena, H.; Zúñiga-Rosales, Y.; Monzón-Benítez, G.; Suárez-Besil, B.; González-Torres, M.Á.; Torres-Rives, B.; Álvarez-Gavilán, Y.; Bravo-Ramírez, M.; Pereira-Roche, N.; Benítez-Cordero, Y.; Silva-Ayçaguer, L.C.; Marcheco-Teruel, B. The role of tumor necrosis factor alpha − 308A > G polymorphism on the clinical states of SARS-CoV-2 infection. Egypt. J. Med. Hum. Genet., 2022, 23(1), 55.
[http://dx.doi.org/10.1186/s43042-022-00274-0] [PMID: 37521833]
[36]
Paim, A.A.O.; Lopes-Ribeiro, Á.; Daian e Silva, D.S.O.; Andrade, L.A.F.; Moraes, T.F.S.; Barbosa-Stancioli, E.F.; da Fonseca, F.G.; Coelho-dos-Reis, J.G. Will a little change do you good? A putative role of polymorphisms in COVID-19. Immunol. Lett., 2021, 235, 9-14.
[http://dx.doi.org/10.1016/j.imlet.2021.04.005] [PMID: 33901540]
[37]
Silva, L.B.; dos Santos Neto, A.P.; Maia, S.M.A.S.; dos Santos Guimarães, C.; Quidute, I.L.; Carvalho, A.A.T.; Júnior, S.A.; Leão, J.C. The role of TNF-α as a proinflammatory cytokines in pathological processes. Open Dent. J., 2019, 13(1), 332-338.
[http://dx.doi.org/10.2174/1874210601913010332]
[38]
Zhang, Y.; Cui, X.; Ning, L.; Wei, D. The effects of tumor necrosis factor-α (TNF-α) rs1800629 and rs361525 polymorphisms on sepsis risk. Oncotarget, 2017, 8(67), 111456-111469.
[http://dx.doi.org/10.18632/oncotarget.22824] [PMID: 29340067]
[39]
Yao, W.; Sun, Y.; Sun, Y.; Chen, P.; Meng, Z.; Xiao, M.; Yang, X. A preliminary report of the relationship between gene polymorphism of IL-8 and its receptors and systemic inflammatory response syndrome caused by wasp stings. DNA Cell Biol., 2019, 38(12), 1512-1518.
[http://dx.doi.org/10.1089/dna.2019.4855] [PMID: 31613654]
[40]
Xiong, X.; Liao, X.; Qiu, S.; Xu, H.; Zhang, S.; Wang, S.; Ai, J.; Yang, L. CXCL8 in tumor biology and its implications for clinical translation. Front. Mol. Biosci., 2022, 9, 723846.
[http://dx.doi.org/10.3389/fmolb.2022.723846] [PMID: 35372515]
[41]
Li, Y.; Bai, J.; He, B.; Wang, N.; Wang, H.; Liu, D. Weak association between the interleukin-8 rs4073 polymorphism and acute pancreatitis: A cumulative meta-analysis. BMC Med. Genet., 2019, 20(1), 129.
[http://dx.doi.org/10.1186/s12881-019-0861-4] [PMID: 31340771]
[42]
Gonzalez-Hormazabal, P.; Romero, S.; Musleh, M.; Bustamante, M.; Stambuk, J.; Pisano, R.; Lanzarini, E.; Chiong, H.; Rojas, J.; Castro, V.G.; Jara, L.; Berger, Z. IL-8-251T> A (rs4073) polymorphism is associated with prognosis in gastric cancer patients. Anticancer Res., 2018, 38(10), 5703-5708.
[http://dx.doi.org/10.21873/anticanres.12907] [PMID: 30275190]
[43]
Zhao, S.; Gong, J.; Yin, S.; Li, X.; Zhao, S.; Mou, T.; Luo, S. The association between interleukin-8 gene-251 A/T polymorphism and sepsis. Medicine, 2021, 100(15), e25483.
[http://dx.doi.org/10.1097/MD.0000000000025483] [PMID: 33847655]
[44]
Shin, D.H.; Kim, E.J.; Kim, S.J.; Park, J.Y.; Oh, J. Delta neutrophil index as a marker for differential diagnosis between acute graft pyelonephritis and acute graft rejection. PLoS One, 2015, 10(8), e0135819.
[http://dx.doi.org/10.1371/journal.pone.0135819] [PMID: 26275220]
[45]
Hu, Q.; Hua, H.; Zhou, L.; Zou, X. Association between interleukin-8 −251A/T polymorphism and the risk of tuberculosis: A meta- analysis. J. Int. Med. Res., 2020, 48(5)
[http://dx.doi.org/10.1177/0300060520917877] [PMID: 32393145]
[46]
Ghareeb, D.; Abdelazem, A.S.; Hussein, E.M.; Al-Karamany, A.S. Association of TNF-α-308 G>A (rs1800629) polymorphism with susceptibility of metabolic syndrome. J. Diabetes Metab. Disord., 2021, 20(1), 209-215.
[http://dx.doi.org/10.1007/s40200-021-00732-3] [PMID: 34178832]
[47]
Velásquez, I.M.; Frumento, P.; Johansson, K.; Berglund, A.; de Faire, U.; Leander, K.; Gigante, B. Association of interleukin 8 with myocardial infarction: Results from the stockholm heart epidemiology program. Int. J. Cardiol., 2014, 172(1), 173-178.
[http://dx.doi.org/10.1016/j.ijcard.2013.12.170] [PMID: 24462138]
[48]
Xuan, Y.; Wang, L.; Zhi, H.; Li, X.; Wei, P. Association between 3 IL-10 gene polymorphisms and cardiovascular disease risk. Medicine, 2016, 95(6), e2846.
[http://dx.doi.org/10.1097/MD.0000000000002846] [PMID: 26871859]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy