Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-05-04T03:07:31.843Z Has data issue: false hasContentIssue false

The identification and classification of candidate genes during the zygotic genome activation in the mammals

Published online by Cambridge University Press:  22 January 2024

Kaiyue Hu
Affiliation:
Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100 China
Wenbo Li
Affiliation:
The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, 450052 China
Shuxia Ma
Affiliation:
Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100 China
Dong Fang
Affiliation:
Luoyang maternal and Child Health Hospital, 206, Tongqu Road, Luoyang, Henan, 47100 China
Jiawei Xu*
Affiliation:
The First Affiliated Hospital of Zhengzhou University, 40, Daxue Road, Zhengzhou, Henan, 450052 China
*
Corresponding author: Jiawei Xu; Email: fccxujw@zzu.edu.cn

Summary

Zygotic genome activation (ZGA) is a critical event in early embryonic development, and thousands of genes are involved in this delicate and sophisticated biological process. To date, however, only a handful of these genes have revealed their core functions in this special process, and therefore the roles of other genes still remain unclear. In the present study, we used previously published transcriptome profiling to identify potential key genes (candidate genes) in minor ZGA and major ZGA in both human and mouse specimens, and further identified the conserved genes across species. Our results showed that 887 and 760 genes, respectively, were thought to be specific to human and mouse in major ZGA, and the other 135 genes were considered to be orthologous genes. Moreover, the conserved genes were most enriched in rRNA processing in the nucleus and cytosol, ribonucleoprotein complex biogenesis, ribonucleoprotein complex assembly and ribosome large subunit biogenesis. The findings of this first comprehensive identification and characterization of candidate genes in minor and major ZGA provide relevant insights for future studies on ZGA.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abe, K., Yamamoto, R., Franke, V., Cao, M., Suzuki, Y., Suzuki, M. G., Vlahovicek, K., Svoboda, P., Schultz, R. M. and Aoki, F. (2015). The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing. EMBO Journal, 34(11), 15231537. doi: 10.15252/embj.201490648 Google Scholar
Abe, K. I., Funaya, S., Tsukioka, D., Kawamura, M., Suzuki, Y., Suzuki, M. G., Schultz, R. M. and Aoki, F. (2018). Minor zygotic gene activation is essential for mouse preimplantation development. Proceedings of the National Academy of Sciences of the United States of America, 115(29), E6780E6788. doi: 10.1073/pnas.1804309115 Google Scholar
Chen, Z. and Zhang, Y. (2019). Loss of DUX causes minor defects in zygotic genome activation and is compatible with mouse development. Nature Genetics, 51(6), 947951. doi: 10.1038/s41588-019-0418-7 CrossRefGoogle ScholarPubMed
Chen, C. H., Chang, W. F., Liu, C. C., Su, H. Y., Shyue, S. K., Cheng, W. T., Chen, Y. E., Wu, S. C., Du, F., Sung, L. Y. and Xu, J. (2012). Spatial and temporal distribution of Oct-4 and acetylated H4K5 in rabbit embryos. Reproductive Biomedicine Online, 24(4), 433442. doi: 10.1016/j.rbmo.2012.01.001 Google Scholar
Cheng, Z. L., Zhang, M. L., Lin, H. P., Gao, C., Song, J. B., Zheng, Z., Li, L., Zhang, Y., Shen, X., Zhang, H., Huang, Z., Zhan, W., Zhang, C., Hu, X., Sun, Y. P., Jiang, L., Sun, L., Xu, Y., Yang, C., et al. (2020). The Zscan4-Tet2 transcription nexus regulates metabolic rewiring and enhances proteostasis to promote reprogramming. Cell Reports, 32(2), 107877. doi: 10.1016/j.celrep.2020.107877 Google Scholar
Dahl, J. A., Jung, I., Aanes, H., Greggains, G. D., Manaf, A., Lerdrup, M., Li, G., Kuan, S., Li, B., Lee, A. Y., Preissl, S., Jermstad, I., Haugen, M. H., Suganthan, R., Bjørås, M., Hansen, K., Dalen, K. T., Fedorcsak, P., Ren, B. and Klungland, A. (2016). Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition. Nature, 537(7621), 548552. doi: 10.1038/nature19360 Google Scholar
De Iaco, A., Planet, E., Coluccio, A., Verp, S., Duc, J. and Trono, D. (2017). DUX-family transcription factors regulate zygotic genome activation in placental mammals. Nature Genetics, 49(6), 941945. doi: 10.1038/ng.3858 Google Scholar
Domazet-Lošo, T. and Tautz, D. (2008). An ancient evolutionary origin of genes associated with human genetic diseases. Molecular Biology Evolution, 25(12), 26992707. doi: 10.1093/molbev/msn214 Google Scholar
Domazet-Lošo, T. and Tautz, D. (2010). A phylogenetically based transcriptome age index mirrors ontogenetic divergence patterns. Nature, 468(7325), 815818. doi: 10.1038/nature09632 Google Scholar
Driever, W. and Nüsslein-Volhard, C. (1988). The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell, 54(1), 95104. doi: 10.1016/0092-8674(88)90183-3 Google Scholar
Duan, J., Rieder, L., Colonnetta, M. M., Huang, A., McKenney, M., Watters, S., Deshpande, G., Jordan, W., Fawzi, N. and Larschan, E. (2021). CLAMP and Zelda function together to promote Drosophila zygotic genome activation. eLife, 10. doi: 10.7554/eLife.69937 Google Scholar
Dunwell, T. L. and Holland, P. W. H. (2017). A sister of NANOG regulates genes expressed in pre-implantation human development. Open Biology, 7(4). doi: 10.1098/rsob.170027 Google Scholar
Eckersley-Maslin, M. A., Alda-Catalinas, C. and Reik, W. (2018). Dynamics of the epigenetic landscape during the maternal-to-zygotic transition. Nature Reviews. Molecular Cell Biology, 19(7), 436450. doi: 10.1038/s41580-018-0008-z Google Scholar
Eisa, A. A., Bang, S., Crawford, K. J., Murphy, E. M., Feng, W. W., Dey, S., Wells, W., Kon, N., Gu, W., Mehlmann, L. M., Vijayaraghavan, S. and Kurokawa, M. (2020). X-linked Huwe1 is essential for oocyte maturation and preimplantation embryo development. iScience, 23(9), 101523. doi: 10.1016/j.isci.2020.101523 Google Scholar
Fan, X., Zhang, X., Wu, X., Guo, H., Hu, Y., Tang, F. and Huang, Y. (2015). Single-cell RNA-seq transcriptome analysis of linear and circular RNAs in mouse preimplantation embryos. Genome Biology, 16(1), 148. doi: 10.1186/s13059-015-0706-1 Google Scholar
Gao, L., Wu, K., Liu, Z., Yao, X., Yuan, S., Tao, W., Yi, L., Yu, G., Hou, Z., Fan, D., Tian, Y., Liu, J., Chen, Z. J. and Liu, J. (2018). Chromatin accessibility landscape in human early embryos and its association with evolution. Cell, 173(1), 248259.e15 e215. doi: 10.1016/j.cell.2018.02.028 Google Scholar
Hamatani, T., Carter, M. G., Sharov, A. A. and Ko, M. S. (2004). Dynamics of global gene expression changes during mouse preimplantation development. Developmental Cell, 6(1), 117131. doi: 10.1016/s1534-5807(03)00373-3 Google Scholar
Hendrickson, P. G., Doráis, J. A., Grow, E. J., Whiddon, J. L., Lim, J. W., Wike, C. L., Weaver, B. D., Pflueger, C., Emery, B. R., Wilcox, A. L., Nix, D. A., Peterson, C. M., Tapscott, S. J., Carrell, D. T. and Cairns, B. R. (2017). Conserved roles of mouse DUX and human DUX4 in activating cleavage-stage genes and MERVL/HERVL retrotransposons. Nature Genetics, 49(6), 925934. doi: 10.1038/ng.3844 Google Scholar
Hu, Z., Tan, D. E. K., Chia, G., Tan, H., Leong, H. F., Chen, B. J., Lau, M. S., Tan, K. Y. S., Bi, X., Yang, D., Ho, Y. S., Wu, B., Bao, S., Wong, E. S. M. and Tee, W. W. (2020). Maternal factor NELFA drives a 2C-like state in mouse embryonic stem cells. Nature Cell Biology, 22(2), 175186. doi: 10.1038/s41556-019-0453-8 Google Scholar
Innocenti, F., Fiorentino, G., Cimadomo, D., Soscia, D., Garagna, S., Rienzi, L., Ubaldi, F. M., Zuccotti, M. and SIERR. (2022). Maternal effect factors that contribute to oocytes developmental competence: An update. Journal of Assisted Reproduction and Genetics, 39(4), 861871. doi: 10.1007/s10815-022-02434-y Google Scholar
Iurlaro, M., von Meyenn, F. and Reik, W. (2017). DNA methylation homeostasis in human and mouse development. Current Opinion in Genetics and Development, 43, 101109. doi: 10.1016/j.gde.2017.02.003 Google Scholar
Ji, S., Chen, F., Stein, P., Wang, J., Zhou, Z., Wang, L., Zhao, Q., Lin, Z., Liu, B., Xu, K., Lai, F., Xiong, Z., Hu, X., Kong, T., Kong, F., Huang, B., Wang, Q., Xu, Q., Fan, Q., et al. (2023). OBOX regulates mouse zygotic genome activation and early development. Nature, 620(7976), 10471053. doi: 10.1038/s41586-023-06428-3 Google Scholar
Lee, M. T., Bonneau, A. R., Takacs, C. M., Bazzini, A. A., DiVito, K. R., Fleming, E. S. and Giraldez, A. J. (2013). Nanog, Pou5f1 and SoxB1 activate zygotic gene expression during the maternal-to-zygotic transition. Nature, 503(7476), 360364. doi: 10.1038/nature12632 Google Scholar
Li, L., Zheng, P. and Dean, J. (2010). Maternal control of early mouse development. Development, 137(6), 859870. doi: 10.1242/dev.039487 Google Scholar
Li, Y., Zhang, Z., Chen, J., Liu, W., Lai, W., Liu, B., Li, X., Liu, L., Xu, S., Dong, Q., Wang, M., Duan, X., Tan, J., Zheng, Y., Zhang, P., Fan, G., Wong, J., Xu, G. L., Wang, Z., et al. (2018). Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature, 564(7734), 136140. doi: 10.1038/s41586-018-0751-5 Google Scholar
Messerschmidt, D. M., Knowles, B. B. and Solter, D. (2014). DNA methylation dynamics during epigenetic reprogramming in the germline and preimplantation embryos. Genes and Development, 28(8), 812828. doi: 10.1101/gad.234294.113 Google Scholar
Moore, G. P., Lintern-Moore, S., Peters, H. and Faber, M. (1974). RNA synthesis in the mouse oocyte. Journal of Cell Biology, 60(2), 416422. doi: 10.1083/jcb.60.2.416 Google Scholar
Mwalilino, L., Yamane, M., Ishiguro, K. I., Usuki, S., Endoh, M. and Niwa, H. (2023). The role of Zfp352 in the regulation of transient expression of 2-cell specific genes in mouse embryonic stem cells. Genes to Cells: Devoted to Molecular and Cellular Mechanisms, 28(12), 831844. doi: 10.1111/gtc.13070 Google Scholar
Neme, R. and Tautz, D. (2013). Phylogenetic patterns of emergence of new genes support a model of frequent de novo evolution. BMC Genomics, 14, 117. doi: 10.1186/1471-2164-14-117 Google Scholar
Nüsslein-Volhard, C. and Wieschaus, E. (1980). Mutations affecting segment number and polarity in Drosophila . Nature, 287(5785), 795801. doi: 10.1038/287795a0 Google Scholar
Ogawa, S., Yamada, M., Nakamura, A., Sugawara, T., Nakamura, A., Miyajima, S., Harada, Y., Ooka, R., Okawa, R., Miyauchi, J., Tsumura, H., Yoshimura, Y., Miyado, K., Akutsu, H., Tanaka, M., Umezawa, A. and Hamatani, T. (2019). Zscan5b deficiency impairs DNA damage response and causes chromosomal aberrations during mitosis. Stem Cell Reports, 12(6), 13661379. doi: 10.1016/j.stemcr.2019.05.002 Google Scholar
Riesle, A. J., Gao, M., Rosenblatt, M., Hermes, J., Hass, H., Gebhard, A., Veil, M., Grüning, B., Timmer, J. and Onichtchouk, D. (2023). Activator-blocker model of transcriptional regulation by pioneer-like factors. Nature Communications, 14(1), 5677. doi: 10.1038/s41467-023-41507-z Google Scholar
Rizvi, A. H., Camara, P. G., Kandror, E. K., Roberts, T. J., Schieren, I., Maniatis, T. and Rabadan, R. (2017). Single-cell topological RNA-seq analysis reveals insights into cellular differentiation and development. Nature Biotechnology, 35(6), 551560. doi: 10.1038/nbt.3854 Google Scholar
Schultz, R. M. (2002). The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Human Reproduction Update, 8(4), 323331. doi: 10.1093/humupd/8.4.323 Google Scholar
Sha, Q. Q., Zhang, J. and Fan, H. Y. (2019). A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals. Biology of Reproduction, 101(3), 579590. doi: 10.1093/biolre/ioz012 Google Scholar
Sha, Q. Q., Zhu, Y. Z., Li, S., Jiang, Y., Chen, L., Sun, X. H., Shen, L., Ou, X. H. and Fan, H. Y. (2020) Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Research, 48(2), 879894. doi: 10.1093/nar/gkz1111 Google Scholar
Shen, W., Gong, B., Xing, C., Zhang, L., Sun, J., Chen, Y., Yang, C., Yan, L., Chen, L., Yao, L., Li, G., Deng, H., Wu, X. and Meng, A. (2022). Comprehensive maturity of nuclear pore complexes regulates zygotic genome activation. Cell, 185(26), 49544970.e20. doi: 10.1016/j.cell.2022.11.011 Google Scholar
Shi, F., Li, H., Wang, E., Chen, Z. J. and Zhang, C. (2018). Melatonin reduces two-cell block via nonreceptor pathway in mice. Journal of Cellular Biochemistry, 119(11), 93809393. doi: 10.1002/jcb.27255 Google Scholar
Shpargel, K. B., Starmer, J., Yee, D., Pohlers, M. and Magnuson, T. (2014). KDM6 demethylase independent loss of histone H3 lysine 27 trimethylation during early embryonic development. PLOS Genetics, 10(8), e1004507. doi: 10.1371/journal.pgen.1004507 Google Scholar
Srinivasan, R., Nady, N., Arora, N., Hsieh, L. J., Swigut, T., Narlikar, G. J., Wossidlo, M. and Wysocka, J. (2020). Zscan4 binds nucleosomal microsatellite DNA and protects mouse two-cell embryos from DNA damage. Science Advances, 6(12), eaaz9115. doi: 10.1126/sciadv.aaz9115 Google Scholar
Tadros, W. and Lipshitz, H. D. (2009). The maternal-to-zygotic transition: A play in two acts. Development, 136(18), 30333042. doi: 10.1242/dev.033183 Google Scholar
Vastenhouw, N. L., Cao, W. X. and Lipshitz, H. D. (2019). The maternal-to-zygotic transition revisited. Development, 146(11). doi: 10.1242/dev.161471 Google Scholar
Vuoristo, S., Bhagat, S., Hydén-Granskog, C., Yoshihara, M., Gawriyski, L., Jouhilahti, E. M., Ranga, V., Tamirat, M., Huhtala, M., Kirjanov, I., Nykänen, S., Krjutškov, K., Damdimopoulos, A., Weltner, J., Hashimoto, K., Recher, G., Ezer, S., Paluoja, P., Paloviita, P., et al. (2022). DUX4 is a multifunctional factor priming human embryonic genome activation. iScience, 25(4), 104137. doi: 10.1016/j.isci.2022.104137 Google Scholar
Wan, M., Liang, J., Xiong, Y., Shi, F., Zhang, Y., Lu, W., He, Q., Yang, D., Chen, R., Liu, D., Barton, M. and Songyang, Z. (2013). The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. Journal of Biological Chemistry, 288(7), 50395048. doi: 10.1074/jbc.M112.424515 Google Scholar
Wang, J., Zhang, M., Zhang, Y., Kou, Z., Han, Z., Chen, D. Y., Sun, Q. Y. and Gao, S. (2010). The histone demethylase JMJD2C is stage-specifically expressed in preimplantation mouse embryos and is required for embryonic development. Biology of Reproduction, 82(1), 105111. doi: 10.1095/biolreprod.109.078055 CrossRefGoogle ScholarPubMed
Washkowitz, A. J., Schall, C., Zhang, K., Wurst, W., Floss, T., Mager, J. and Papaioannou, V. E. (2015). Mga is essential for the survival of pluripotent cells during peri-implantation development. Development, 142(1), 3140. doi: 10.1242/dev.111104 Google Scholar
Whiddon, J. L., Langford, A. T., Wong, C. J., Zhong, J. W. and Tapscott, S. J. (2017). Conservation and innovation in the DUX4-family gene network. Nature Genetics, 49(6), 935940. doi: 10.1038/ng.3846 Google Scholar
Wu, J., Huang, B., Chen, H., Yin, Q., Liu, Y., Xiang, Y., Zhang, B., Liu, B., Wang, Q., Xia, W., Li, W., Li, Y., Ma, J., Peng, X., Zheng, H., Ming, J., Zhang, W., Zhang, J., Tian, G., et al. (2016). The landscape of accessible chromatin in mammalian preimplantation embryos. Nature, 534(7609), 652657. doi: 10.1038/nature18606 Google Scholar
Wu, J., Xu, J., Liu, B., Yao, G., Wang, P., Lin, Z., Huang, B., Wang, X., Li, T., Shi, S., Zhang, N., Duan, F., Ming, J., Zhang, X., Niu, W., Song, W., Jin, H., Guo, Y., Dai, S., et al. (2018). Chromatin analysis in human early development reveals epigenetic transition during ZGA. Nature, 557(7704), 256260. doi: 10.1038/s41586-018-0080-8 Google Scholar
Xia, W., Xu, J., Yu, G., Yao, G., Xu, K., Ma, X., Zhang, N., Liu, B., Li, T., Lin, Z., Chen, X., Li, L., Wang, Q., Shi, D., Shi, S., Zhang, Y., Song, W., Jin, H., Hu, L., et al. (2019). Resetting histone modifications during human parental-to-zygotic transition. Science, 365(6451), 353360. doi: 10.1126/science.aaw5118 Google Scholar
Yamamoto, R. and Aoki, F. (2017). A unique mechanism regulating gene expression in 1-cell embryos. Journal of Reproduction and Development, 63(1), 911. doi: 10.1262/jrd.2016-133 Google Scholar
Yu, C., Ji, S. Y., Sha, Q. Q., Dang, Y., Zhou, J. J., Zhang, Y. L., Liu, Y., Wang, Z. W., Hu, B., Sun, Q. Y., Sun, S. C., Tang, F. and Fan, H. Y. (2016). BTG4 is a meiotic cell cycle-coupled maternal-zygotic-transition licensing factor in oocytes. Nature Structural and Molecular Biology, 23(5), 387394. doi: 10.1038/nsmb.3204 Google Scholar
Zhang, B., Zheng, H., Huang, B., Li, W., Xiang, Y., Peng, X., Ming, J., Wu, X., Zhang, Y., Xu, Q., Liu, W., Kou, X., Zhao, Y., He, W., Li, C., Chen, B., Li, Y., Wang, Q., Ma, J., et al. (2016). Allelic reprogramming of the histone modification H3K4me3 in early mammalian development. Nature, 537(7621), 553557. doi: 10.1038/nature19361 Google Scholar
Zhang, J. M., Hou, W. B., Du, J. W., Zong, M., Zheng, K. L., Wang, W. J., Wang, J. Q., Zhang, H., Mu, Y. S., Yin, Z., Ding, C. M., Sun, Q. Y., Liu, Z. H. and Kong, Q. R. (2020). Argonaute 2 is a key regulator of maternal mRNA degradation in mouse early embryos. Cell Death Discovery, 6(1), 133. doi: 10.1038/s41420-020-00368-x Google Scholar
Zheng, W. and Liu, K. (2012). Maternal control of mouse preimplantation development. Results and Problems in Cell Differentiation, 55, 115139. doi: 10.1007/978-3-642-30406-4_7 Google Scholar
Zhou, Y., Zhou, B., Pache, L., Chang, M., Khodabakhshi, A. H., Tanaseichuk, O., Benner, C. and Chanda, S. K. (2019). Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nature Communications, 10(1), 1523. doi: 10.1038/s41467-019-09234-6 Google Scholar
Supplementary material: File

Hu et al. supplementary material

Hu et al. supplementary material

Download Hu et al. supplementary material(File)
File 1.6 MB