Skip to main content
Log in

Hypercholesterolemia diagnosis by a biosensor based on photonic crystal PANDA structure

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A biosensor based on 2-D photonic crystals is presented and considered. The proposed structure is made of 24 × 23 Si rods in the air background. The presented biosensor would be considered for detection of Cholesterol concentrations in blood samples, which can aid physicians in diagnosis of Hypercholesterolemia and heart diseases in early stages. To facilitate the designation and fabrication processes and overcome the gain and nonlinearity problems, only linear rods would be utilized. The presented structure operates based on the interference and scattering effects of Si defect rods positioned in the structure (black rods operate as the confining sensing media and dark green rods function as the coupling rods). The PANDA (the proposed structure indicates a PANDA face)-shaped waveguides can filter the resonant wavelengths. For studying the functionality of the proposed biosensor, photonic band gap (by the plane wave expansion (PWE) method) and field distribution (by the finite-difference-time-domain (FDTD) method) spectra should be considered. The appropriate dimension of the proposed biosensor (111.78 μm2) makes it a considerable option for utilization in bio-optical integrated circuits. Finally, for the Cholesterol concentrations in blood samples, the remarkable sensitivity (595.74 nm/RIU “RIU stands for refractive index unit”), quality factor (35–46), detection limit (6.1e−3–6.7e−3) RIU and figure of merit (14.89–16.3) RIU−1 were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This declaration is not applicable.

References

  1. Parandin, F., Sheykhian, A.: Design and simulation of a 2 × 1 All-Optical multiplexer based on photonic crystals. Opt. Laser Technol. 151, 108021 (2022)

    Article  CAS  Google Scholar 

  2. Rafiee, E., Emami, F.: Design of a novel all-optical ring shaped demultiplexer based on two-dimensional photonic crystals. Optik 140, 873–877 (2017)

    Article  ADS  CAS  Google Scholar 

  3. Parandin, F.: High contrast ratio all-optical 4 × 2 encoder based on two-dimensional photonic crystals. Opt. Laser Technol. 113, 447–452 (2019)

    Article  ADS  CAS  Google Scholar 

  4. Li, H., et al.: Reverse-designed photonic crystal fiber-based polarization filter with optimal performance. Opt. Laser Technol. 168, 109909 (2024)

    Article  CAS  Google Scholar 

  5. Rafiee, E.: Photonic crystal based biosensor for diagnosis of kidney failure and diabetes. Plasmonics (2023). https://doi.org/10.1007/s11468-023-02014-5

    Article  PubMed  PubMed Central  Google Scholar 

  6. Li, H., et al.: Electric field distribution of photonic crystals waveguide with function line defect. Optik 270, 169987 (2022)

    Article  ADS  Google Scholar 

  7. Parandin, F., Kamarian, R., Jomour, M.: A novel design of all optical half-subtractor using a square lattice photonic crystals. Opt. Quant. Electron. 53, 114 (2021)

    Article  Google Scholar 

  8. Parandin, F., et al.: Design of 2D photonic crystal biosensor to detect blood Components. Opt. Quant. Electron. 54, 618 (2022)

    Article  CAS  Google Scholar 

  9. Rafiee, E., et al.: Cancer cell detection biosensor based on graphene-plasmonic split square-ring-shaped nanostructure. Plasmonics 18, 431–440 (2023)

    Article  CAS  Google Scholar 

  10. Negahdari, R., et al.: A sensitive biosensor based on plasmonic-graphene configuration for detection of COVID-19 virus. Plasmonics 18, 1325–1335 (2023)

    Article  CAS  Google Scholar 

  11. Palai, G., et al.: Optical MUX/DEMUX using 3D photonic crystal structure: a future application of silicon photonics. Optik 128, 224–227 (2017)

    Article  ADS  CAS  Google Scholar 

  12. Vahdati, A., Parandin, F.: Antenna patch design using a photonic crystal substrate at a frequency of 1.6 THz. Wireless Pers. Commun. 109, 2213–2219 (2019)

    Article  Google Scholar 

  13. Parandin, F., Moayed, M.: Designing and simulation of 3-input majority gate based on two-dimensional photonic crystals. Optik 216, 164930 (2020). https://doi.org/10.1016/j.ijleo.2020.164930

    Article  ADS  CAS  Google Scholar 

  14. Parandin, F., Heidari, F., Rahimi, Z., Olyaee, S.: Two-dimensional photonic crystal biosensors: a review. Opt. Laser Technol. 144, 107397 (2021). https://doi.org/10.1016/j.optlastec.2021.107397

    Article  CAS  Google Scholar 

  15. Askarian, A.: Design and analysis of all optical 2 × 4 decoder based on kerr effect and beams interference procedure. Opt. Quant. Electron. 53, 291 (2021)

    Article  CAS  Google Scholar 

  16. Chaudhary, V.S., et al.: Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a Review. IEEE Sens. J. 23(2), 1012–1023 (2023)

    Article  ADS  CAS  Google Scholar 

  17. Chaudhary, V.S., et al.: Au-TiO2 coated photonic crystal fiber based SPR refractometric sensor for detection of cancerous cells. IEEE Trans. Nanobioscience 22(3), 562–569 (2023)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Cherepanova, Y.M., et al.: A new approach to the synthesis of anodic titania photonic crystals with desired position and high reflectance of photonic band gaps. Opt. Mater. 146, 114534 (2023)

    Article  CAS  Google Scholar 

  19. Zhang, Y., et al.: A new optical fiber biosensor for acetylcholine detection based on pH sensitive fluorescent carbon quantum dots. Sens. Actuators B Chem. 369, 132268 (2022)

    Article  CAS  Google Scholar 

  20. Guszcz, T., et al.: Application of surface plasmon resonance imaging biosensors for determination of fibronectin, laminin-5 and type IV collagen in serum of transitional bladder cancer patients. J. Pharm. Biomed. Anal. 222, 115103 (2023)

    Article  CAS  PubMed  Google Scholar 

  21. Negahdari, R., et al.: Sensitive MIM plasmonic biosensors for detection of hemoglobin, creatinine and cholesterol concentrations. Diam. Relat. Mater. 136, 110029 (2023)

    Article  ADS  CAS  Google Scholar 

  22. Jia, M., et al.: An aptamer-functionalized photonic crystal sensor for ultrasensitive and label-free detection of aflatoxin B1. Talanta 260, 124638 (2023)

    Article  CAS  PubMed  Google Scholar 

  23. Chahkoutahi, A., et al.: Sensitive hemoglobin concentration sensor based on graphene-plasmonic nano-structures. Plasmonics 17, 423–431 (2022)

    Article  CAS  PubMed  Google Scholar 

  24. Panda, A., et al.: Performance analysis of graphene-based surface plasmon resonance biosensor for blood glucose and gas detection. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-3328-8

    Article  Google Scholar 

  25. Aly, A.H., Mohamed, D., Mohaseb, M.A., Abd El-Gawaad, N.S., Trabelsi, Y.: Biophotonic sensor for the detection of creatinine concentration in blood serum based on 1D photonic crystal. RSC Adv. 10, 31765 (2020). https://doi.org/10.1039/D0RA05448H

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin, Y.L., Chen, J.Y., Xu, L., Wang, P.N.: Refractive index measurement for biomaterial samples by total internal reflection. Phys. Med. Biol. 51, 371–379 (2006). https://doi.org/10.1088/0031-9155/51/20/N02

    Article  Google Scholar 

  27. Di Ciaula, A., et al.: Bile acid physiology. Ann. Hepatol. 16, S4–S14 (2017)

    Article  PubMed  Google Scholar 

  28. Ibrahim, M.A., et al.: Hypercholesterolemia. StatPearls Publishing LLC, Treasure Island, FL (2023)

    Google Scholar 

  29. Grundy, S.M., et al.: AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 139(25), e1182–e1186 (2019)

    Google Scholar 

  30. Mozaffarian, D., et al.: Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4), e29-322 (2015)

    PubMed  Google Scholar 

  31. Dash, D., Saini, J.: Hyperbolic graded index biophotonic cholesterol sensor with improved sensitivity. Prog. Electromagn. Res. M. 116, 165–176 (2023)

    Article  CAS  Google Scholar 

  32. Rahman, M., et al.: Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs. Sens. Bio-Sens. Res. 29, 100356 (2020)

    Article  Google Scholar 

  33. Kumar, S., et al.: Advances in 2D nanomaterials-assisted plasmonics optical fiber sensors for biomolecules detection. Results Opt. 10, 100342 (2023)

    Article  Google Scholar 

  34. Kumar, A., et al.: Ultrahigh sensitive graphene oxide/conducting polymer composite based biosensor for cholesterol and bilirubin detection. Biosens. Bioelectron. X. 13, 100290 (2023)

    CAS  Google Scholar 

  35. Abdolmohammad-Zadeh, H., et al.: A fluorescent biosensor based on graphene quantum dots/zirconium-based metal-organic framework nanocomposite as a peroxidase mimic for cholesterol monitoring in human serum. Microchem. J. 164, 106001 (2021)

    Article  CAS  Google Scholar 

  36. Gao, Y.F., et al.: Design of novel power splitters by directional coupling between photonic crystal waveguides. Optoelectron. Lett. 6, 417–420 (2010). https://doi.org/10.1007/s11801-010-0017-4

    Article  ADS  Google Scholar 

  37. Elyasi, B., Javahernia, S.: All optical digital multiplexer using nonlinear photonic crystal ring resonators. JOPN. 7(1), 97–106 (2022)

    Google Scholar 

  38. Olyaeea, S., Mohebzadeh-Bahabady, A.: Two-curve-shaped biosensor using photonic crystal nano-ring resonators. JNS. 4, 303–308 (2014)

    Google Scholar 

  39. D.M. Sullivan, Electromagnetic simulation using the FDTD method, Wiley-IEEE (2000).

  40. Maleki, M.J., et al.: A compact high-performance decoder using the resonant cavities in photonic crystal structure. Opt. Quantum Electron. 55, 852 (2023)

    Article  Google Scholar 

  41. Ma, H.: Cholesterol and human health. Nat. Sci. 2(4), 17–21 (2004)

    Google Scholar 

  42. Chorsi, H.T., et al.: Tunable plasmonic substrates with ultrahigh Q-factor resonances. Sci. Rep. 7, 15985 (2017)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  43. Lu, Y., Li, H., Qian, X., Zheng, W., Sun, Y., Shi, B., Zhang, Y.: Beta-cyclodextrin based reflective fiber-optic SPR sensor for highly-sensitive detection of cholesterol concentration. Opt. Fiber Technol. 56, 102187 (2020). https://doi.org/10.1016/j.yofte.2020.102187

    Article  CAS  Google Scholar 

  44. Fu, X., Li, D., Zhang, Y., Fu, G., Jin, W., Bei, W.: High sensitivity refractive index sensor based on cascaded core-offset splicing NCF-HCF-NCF structure. Opt. Fiber Technol. 68, 102791 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ER and ER. The first draft of the manuscript was written by ER and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Esmat Rafiee.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This declaration is not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafiee, E., Rafiei, E. Hypercholesterolemia diagnosis by a biosensor based on photonic crystal PANDA structure. Opt Rev 31, 87–93 (2024). https://doi.org/10.1007/s10043-023-00859-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-023-00859-z

Keywords

Navigation