Skip to main content
Log in

Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper, the stochastic optimal control of a piecewise electromechanically coupled tri-stable energy harvester (TEH) driven by colored noise is investigated. For the purpose of efficient DC supply, the P-SSHI circuit is chosen as the harvesting circuit connected to the TEH. Based on the statistical linearization and the moment method, the analytical expressions of the stationary response moments and the mean harvested power are derived. Then, the stochastic optimal control problem of the TEH is considered from the perspective of extremum optimization of the multivariable function. The effects of colored noise and system parameters on harvesting performance and control effectiveness are further explored. The results show that the time constant ratio can improve the harvested DC power but weaken the rectification efficiency of the circuit, which plays an opposite role to the inversion factor. The electromechanical-coupled coefficient is beneficial to the enhancement of DC power, but it is not conducive to the effectiveness of the control method. The control effectiveness of the rectification efficiency can be optimized by choosing an appropriate noise intensity. The harvesting performance of controlled TEH is significantly higher than that without control. The Monte Carlo simulations (MCS) well support the theoretical results.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: The data that support the findings of this study are available from the first author upon reasonable request.]

References

  1. T. Yildirim, M.H. Ghayesh, W. Li, G. Alici, A review on performance enhancement techniques for ambient vibration energy harvesters. Renew. Sust. Energ. Rev. 71, 435–449 (2017)

    Article  Google Scholar 

  2. P. Harris, M. Arafa, G. Litak, C.R. Bowen, J. Iwaniec, Output response identification in a multistable system for piezoelectric energy harvesting. Eur. Phys. J. B. 90(1), 20 (2017)

    Article  ADS  Google Scholar 

  3. J. Margielewicz, D. Gaska, J. Caban, G. Litak, A. Dudziak, X.Q. Ma, S.X. Zhou, Double-versus triple-potential well energy harvesters: dynamics and power output. Sensors 23(4), 2185 (2023)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  4. W.Z. Deng, W.Y. Qin, J.A. Pan, S.J. Shang, H.T. Li, Improve harvesting efficiency of tri-stable energy harvester by tailoring potential energy. Eur. Phys. J. Plus. 137(2), 268 (2022)

    Article  Google Scholar 

  5. S.X. Zhou, J.Y. Cao, D.J. Inman, J. Lin, D. Li, Harmonic balance analysis of nonlinear tristable energy harvesters for performance enhancement. J. Sound Vib. 373, 223–235 (2016)

    Article  ADS  Google Scholar 

  6. W.A. Jiang, X.D. Ma, M. Liu, M. Han, L.Q. Chen, Q.S. Bi, Dynamics and performance evaluation of a self-tuning multistable shape memory energy harvester. Eur. Phys. J. Plus. 136(5), 595 (2021)

    Article  Google Scholar 

  7. D.T. Ngatcha, P. Woafo, Analysis of an electrostatic energy harvester with variable area, permittivity and radius. Eur. Phys. J. B. 89(10), 229 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  8. H. Jahanshahi, D. Chen, Y.M. Chu, J.F. Gómez-Aguilar, A.A. Aly, Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations. Eur. Phys. J. Plus. 136(3), 278 (2021)

    Article  Google Scholar 

  9. A. Syta, G. Litak, M.I. Friswell, S. Adhikari, Multiple solutions and corresponding power output of a nonlinear bistable piezoelectric energy harvester. Eur. Phys. J. B. 89(4), 99 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. I.S.M. Fokou, C.N.D. Buckjohn, M.S. Siewe, C. Tchawoua, Probabilistic behavior analysis of a sandwiched buckled beam under Gaussian white noise with energy harvesting perspectives. Chaos Solitons Fractals 92, 101–114 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. K. Mallick, P. Marcq, Scaling behavior of a nonlinear oscillator with additive noise, white and colored. Eur. Phys. J. B. 31(4), 553–561 (2003)

    Article  ADS  CAS  Google Scholar 

  12. L.Q. Chen, W.N. Jiang, A piezoelectric energy harvester based on internal resonance. Acta Mech. Sin. 31(2), 223–228 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Y.X. Zhang, Y.F. Jin, P.F. Xu, Dynamics of a coupled nonlinear energy harvester under colored noise and periodic excitations. Int. J. Mech. Sci. 172, 105418 (2020)

    Article  Google Scholar 

  14. S. Ray, S. Mondal, B. Mandal, B.C. Bag, The role of interplay between the potential and the ambient energies on the vibration energy harvesting. Eur. Phys. J. B. 89(10), 224 (2016)

    Article  ADS  Google Scholar 

  15. W. Wang, Y. Zhang, Z.H. Wei, J.Y. Cao, Possible strategies for performance enhancement of asymmetric potential bistable energy harvesters by orbit jumps. Eur. Phys. J. B. 95(3), 58 (2022)

    Article  ADS  CAS  Google Scholar 

  16. A. Pasharavesh, M.T. Ahmadian, Analytical and numerical simulations of energy harvesting using MEMS devices operating in nonlinear regime. Eur. Phys. J. B. 91(10), 241 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  17. J.I.P. Rosselló, H.S. Wio, R.R. Deza, P. Hänggi, Enhancing energy harvesting by coupling monostable oscillators. Eur. Phys. J. B. 90(2), 34 (2017)

    Article  ADS  Google Scholar 

  18. W. Wang, J.Y. Cao, C.R. Bowen, G. Litak, Multiple solutions of asymmetric potential bistable energy harvesters: numerical simulation and experimental validation. Eur. Phys. J. B. 91(10), 254 (2018)

    Article  ADS  CAS  Google Scholar 

  19. T.T. Zhang, Y.F. Jin, Enhanced DC power delivery from a rotational tristable energy harvester driven by colored noise under various constant speeds. Int. J. Non Linear Mech. 147, 104196 (2022)

    Article  ADS  Google Scholar 

  20. V. Kulkarni, F. Giraud, C. Giraud-Audine, M. Amberg, R. Ben Mrad, S.E. Prasad, Integration of a torsion-based shear-mode energy harvester and energy management electronics for a sensor module. J. Intell. Mater. Syst. Struct.Intell. Mater. Syst. Struct. 28(10), 1346–1357 (2017)

    Article  CAS  Google Scholar 

  21. C.N. Loong, C.C. Chang, E.G. Dimitrakopoulos, Circuit nonlinearity effect on the performance of an electromagnetic energy harvester-structure system. Eng. Struct. 173, 449–459 (2018)

    Article  Google Scholar 

  22. M.F. Daqaq, R.S. Crespo, S. Ha, On the efficacy of charging a battery using a chaotic energy harvester. Nonlinear Dyn. 99(2), 1525–1537 (2020)

    Article  Google Scholar 

  23. T.T. Zhang, Y.F. Jin, Y.X. Zhang, Stochastic dynamics of a tri-stable piezoelectric vibration energy harvester interfaced with a standard rectifier circuit. J. Sound Vib. 543, 117379 (2023)

    Article  Google Scholar 

  24. E. Lefeuvre, A. Badel, A. Benayad, L. Lebrun, C. Richard, D. Guyomar, A comparison between several approaches of piezoelectric energy harvesting. J. Phys. IV 128, 177–186 (2005)

    Google Scholar 

  25. A.H. Hosseinloo, J.J. Slotine, K. Turitsyn, Robust and adaptive control of coexisting attractors in nonlinear vibratory energy harvesters. J. Vib. Control 24(12), 2532–2541 (2018)

    Article  MathSciNet  Google Scholar 

  26. Y.F. Jin, Y.X. Zhang, Dynamics of a delayed Duffing-type energy harvester under narrow-band random excitation. Acta Mech. 232(3), 1045–1060 (2021)

    Article  MathSciNet  Google Scholar 

  27. Y. Hara, M. Zhou, A. Li, K. Otsuka, K. Makihara, Piezoelectric energy enhancement strategy for active fuzzy harvester with time-varying and intermittent switching. Smart Mater. Struct. 30(1), 015038 (2021)

    Article  ADS  Google Scholar 

  28. M. Mohammadpour, A. Abdelkefi, P. Safarpour, R. Gavagsaz-Ghoachani, M. Zandi, Controlling chaos in bi-stable energy harvesting systems using delayed feedback control. Meccanica 58(4), 587–606 (2023)

    Article  MathSciNet  Google Scholar 

  29. M.H. Ansari, M.A. Karami, Energy harvesting from controlled buckling of piezoelectric beams. Smart Mater. Struct. 24(11), 115005 (2015)

    Article  ADS  Google Scholar 

  30. E. Zulueta, E. Kurt, Y. Uzun, J.M. Lopez-Guede, Power control optimization of a new contactless piezoelectric harvester. Int. J. Hydrogen Energy 42(28), 18134–18144 (2017)

    Article  CAS  Google Scholar 

  31. I.L. Cassidy, J.T. Scruggs, Statistically linearized optimal control of an electromagnetic vibratory energy harvester. Smart Mater. Struct. 21(8), 085003 (2012)

    Article  ADS  Google Scholar 

  32. R.C. Hu, Z.G. Ying, W.Q. Zhu, A nonlinear stochastic optimal bounded control using stochastic maximum principle. J. Vib. Control 21(11), 2165–2186 (2015)

    Article  MathSciNet  Google Scholar 

  33. T.T. Zhang, Y.F. Jin, Y. Xu, X.L. Yue, Dynamical response and vibrational resonance of a tri-stable energy harvester interfaced with a standard rectifier circuit. Chaos 32(9), 093150 (2022)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  34. C. Zhang, R.L. Harne, B. Li, K. Wang, Statistical quantification of DC power generated by bistable piezoelectric energy harvesters when driven by random excitations. J. Sound Vib. 442, 770–786 (2019)

    Article  ADS  Google Scholar 

  35. J.R. Liang, W.H. Liao, Impedance modeling and analysis for piezoelectric energy harvesting systems. IEEE ASME Trans. Mechatron. 17(6), 1145–1157 (2011)

    Article  Google Scholar 

  36. E. Lefeuvre, A. Badel, C. Richard, L. Petit, D. Guyomar, A comparison between several vibration-powered piezoelectric generators for standalone systems. Sens. Actuators A 126(2), 405–416 (2006)

    Article  CAS  Google Scholar 

  37. D. Valenti, L. Schimansky-Geier, X. Sailer, B. Spagnolo, Moment equations for a spatially extended system of two competing species. Eur. Phys. J. B. 50, 199–203 (2006)

    Article  ADS  CAS  Google Scholar 

  38. W.A. Jiang, L.Q. Chen, Snap-through piezoelectric energy harvesting. J. Sound Vib. 333(18), 4314–4325 (2014)

    Article  ADS  Google Scholar 

  39. Y.X. Zhang, Y.F. Jin, Stochastic dynamics of a piezoelectric energy harvester with correlated colored noises from rotational environment. Nonlinear Dyn. 98(1), 501–515 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Natural Science Foundation (Grant No. 1222015) and the National Natural Science Foundation of China (Grant Nos. 12072025).

Author information

Authors and Affiliations

Authors

Contributions

TZ: Methodology, Software, Data curation, Visualization, Investigation, Writing—original draft. YJ: Conceptualization, Supervision, Validation, Writing—review and editing.

Corresponding author

Correspondence to Yanfei Jin.

Ethics declarations

Conflict of interest

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Jin, Y. Stochastic optimal control of a tri-stable energy harvester with the P-SSHI circuit under colored noise. Eur. Phys. J. B 97, 10 (2024). https://doi.org/10.1140/epjb/s10051-024-00650-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00650-2

Navigation