Skip to main content
Log in

Bisphenol A Induces Reactive Oxygen Species Production and Apoptosis-Related Gene Expression in Pacific Red Snapper Lutjanus peru Leukocytes

  • Research
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Bisphenol A is one of the most used components of the polycarbonate plastic industry in the word. This contaminant has disrupting effect in cells in in vitro and in vivo in fish. This study evaluated for the first time the cytotoxicity, oxidative stress and apoptosis induced by bisphenol A (BPA) in head-kidney and spleen leukocytes isolated from Pacific red snapper Lutjanus peru. Head-kidney and spleen leukocytes were exposed to 100, 1000 and 10,000 µg/mL of BPA at 2 and 24 h. Results showed cytotoxicity of BPA at 1000 and 10,000 µg/mL. Cell viability > 80% was observed in leukocytes exposed to 100 µg/mL for 2 h; thus, this concentration was selected for the remainder of the study. Reactive oxygen species (ROS) production, analyzed by DCF-DA and NBT assays, significantly increased in those leukocytes exposed to BPA compared to controls after 2 or 24 h. Superoxide dismutase and catalase activities increased in head-kidney leukocytes after 24 h of BPA exposure. Apoptosis was inferred from caspase (casp-1 and casp-3), granzyme A (granz-A) and perforin 1 (perf-1) gene expression, which was significantly up-regulated, at 2 h BPA exposure in head-kidney leukocytes, and from granz-A and perf-1, which were up-regulated, after 24 h BPA exposure in spleen leukocytes. Short cytoplasmic prolongations and membrane blebs, suggestive of apoptosis, were observed by scanning electron microscopy. These data suggest that BPA at 100 µg/mL induces cytotoxicity, oxidative stress, apoptosis in Pacific red snapper head-kidney and spleen leukocytes.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  • Afzal G, Ahmad HI, Hussain R, Jamal A, Kiran S, Hussain T, Saeed S, Nisa MU (2022) Bisphenol a induces histopathological, hematobiochemical alterations, oxidative stress, and genotoxicity in Common carp (Cyprinus carpio L). Oxid Med Cell Longev 28:5450421

    Google Scholar 

  • AnvariFar H, Amirkolaie AK, Miandare HK et al (2017) Apoptosis in fish: environmental factors and programmed cell death. Cell Tissue Res 368:425–439

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Tao D, Yu F, Wang T, Qi M, Xu S (2022) Cineole regulates Wnt/β-catenin pathway through Nrf2/keap1/ROS to inhibit bisphenol A-induced apoptosis, autophagy inhibition and immunosuppression of grass carp hepatocytes. Fish Shellfish Immunol 131:30–41

    Article  CAS  PubMed  Google Scholar 

  • Clairborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Handbook of Methods for Oxygen Radical Research. CRC Press, Boca Raton, pp 283–284

    Google Scholar 

  • Cocci P, Gabrielli S, Pastore G, Minicucci M, Mosconi G, Palermo FA (2022) Microplastics accumulation in gastrointestinal tracts of Mullus barbatus and Merluccius merluccius is associated with increased cytokine production and signaling. Chemosphere 307:135813

    Article  CAS  PubMed  Google Scholar 

  • Dupré-Crochet S, Erard M, Nüβe O (2013) ROS production in phagocytes: why, when, and where? J Leukoc Biol 94:657–670

    Article  PubMed  Google Scholar 

  • Espinosa C, García Beltrán JM, Esteban MA, Cuesta A (2018) In vitro effects of virgin microplastics on fish head-kidney leucocyte activities. Environ Pollut 235:30–38

    Article  CAS  PubMed  Google Scholar 

  • Faheem M, Lone KP (2017) Oxidative stress and histopathologic biomarkers of exposure to bisphenol-a in the freshwater fish, Ctenopharyngodon Idella, Brazilian. J Pharmaceut Sci 53:1–9

    Google Scholar 

  • Fernández DJ, Lamkanfi M (2015) Inflammatory caspases: key regulators of inflammation and cell death. Biol Chem 39:193–203

    Article  Google Scholar 

  • Ferreira-Cravo M, Piedras FR, Moraes TB, Ferreirade JL, Freitas DP, Machado MD, Geracitano LA, Monserrat JM (2007) Antioxidant responses and reactive oxygen species generation in different body regions of the estuarine polychaeta Laeonereis acuta (Nereididae). Chemosphere 66:1367–1374

    Article  CAS  PubMed  ADS  Google Scholar 

  • Gao Y, Li A, Zhang W, Pang S, Liang Y, Song M (2022) Assessing the toxicity of bisphenol A and its six alternatives on zebrafish embryo/larvae. Aquat Toxicol 246:106154

    Article  CAS  PubMed  Google Scholar 

  • Geven EJW, Klaren PHM (2017) The teleost head kidney: Integrating thyroid and immune signalling. Dev Comp Immunol 66:73–83

    Article  CAS  PubMed  Google Scholar 

  • Gu Z, Jia R, He Q, Cao L, Du J, Feng W, Jeney G, Xu P, Yin G (2021) Alteration of lipid metabolism, autophagy, apoptosis and immune response in the liver of common carp (Cyprinus carpio) after long-term exposure to bisphenol A. Ecotoxicol Environ Saf 15:111923

    Article  Google Scholar 

  • Hector A (2015) New statistics with R: an introduction for biologists. Oxford University Press, 224 p. ISBN 978-0-19-872906-8

  • INP (2001) Sustentabilidad y Pesca Responsable en México: Evaluación y Manejo. Instituto Nacional de la Pesca (INP). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación, México, p 1111

    Google Scholar 

  • Kaptaner B, Kankaya E (2016) Caspase-3 activation in cytotoxicity of isolated rainbow trout (Oncorhycus mykiss) hepatocytes induced by bisphenol A. Fresen Environ Bull 25:1167–1174

    CAS  Google Scholar 

  • Kemenade BMLV, Groeneveld A, Rens BTTM, Rombout JHWM (1994) Characterization of macrophages and neutrophilic granulocytes from the pronephros of carp (Crypinus carpio). J Exp Biol 187:143–158

    Article  CAS  PubMed  Google Scholar 

  • Lee PT, Zou J, Holland JW, Martin SAM, Collet B, Kanellos T, Secombes CJ (2014) Identification and characterisation of TLR18-21 genes in Atlantic salmon (Salmo salar), Fish Shellfish. Immunol 41:549–559

    CAS  Google Scholar 

  • Lemaire P, Livingstone DR (1993) Pro-oxidant/antioxidant processes and organic xenobiotic interactions in marine organisms: in particular the flounder Platichthys flesus and mussel Mytilus edulis. Trends Comp Biochem Physiol 1:1119–1150

    Google Scholar 

  • Liang W, Li B, Jong MC, Ma C, Zuo C, Chen Q, Shi H (2023) Process-oriented impacts of microplastic fibers on behavior and histology of fish. J Hazard Mater 448:130856

  • Liao C, Liu F, Guo Y et al (2012) Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol 46:9138–9145

    Article  CAS  PubMed  ADS  Google Scholar 

  • Liu Q, Wang W, Zhang Y, Cui Y, Xu S, Li S (2020a) Bisphenol A regulates cytochrome P450 1B1 through miR-27b-3p and induces carp lymphocyte oxidative stress leading to apoptosis. Fish Shellfish Immunol 102:489–498

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Pan C, Tang Y, Chen F, Yang M, Wang KJ (2020b) Identification of novel long non-coding RNAs involved in bisphenol A induced immunotoxicity in fish primary macrophages. Fish Shellfish Immunol 100:152–160

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using realtime quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luigi C, Nicola C, Elisabetta T et al (2009) Measurement of bisphenol A and bisphenol B levels in human blood sera from healthy and endometriotic women. Biomed Chromatogr 23:1186–1190

    Article  Google Scholar 

  • Mattsson K, Hansson LA, Cedervall T (2015a) Nano-plastics in the aquatic environment. Environ Sci Process Impacts 17:1712–1721

    Article  CAS  PubMed  Google Scholar 

  • Mattsson K, Ekvall MT, Hansson LA, Linse S, Malmendal A, Cedervall T (2015b) Altered behavior, physiology, and metabolism in fish exposed to polystyrene nanoparticles. Environ Sci Technol 49:553–561

    Article  CAS  PubMed  ADS  Google Scholar 

  • McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5:008656

    Article  Google Scholar 

  • Minaz M, Er A, Ak K, Nane İD, İpek ZZ, Aslankoç R (2023) Bisphenol a used in plastic industry negatively affects wild vimba bream (Vimba vimba). Turk J Fisheries Aquat Sci 23:TRJFAS22598

    Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 1:1–13

    Article  MathSciNet  CAS  Google Scholar 

  • Pardo J, Bosque A, Brehm R, Wallich R, Naval J, Müllbacher A, Anel A, Simon MM (2004) Apoptotic pathways are selectively activated by granzyme A and/or granzyme B in CTL-mediated target cell lysis. J Cell Biol 8:457–468

    Article  Google Scholar 

  • Pederzoli A, Trevisan P (1982) Pigmentary system of the adult alpine salamander Salamandra atra aurorae (Trevisan, 1982). Pigment Cell Res 3:80–89

  • Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A (2017) Oxidative Stress: harms and benefits for human health. Oxid Med Cell Longev 2017:8416763

    Article  PubMed  PubMed Central  Google Scholar 

  • Qi YT, Jiang H, Wu WT, Zhang FL, Tian SY, Fan WT, Liu YL, Amatore C, Huang WH (2022) Homeostasis inside single activated phagolysosomes: Quantitative and selective measurements of submillisecond dynamics of reactive oxygen and nitrogen species production with a nanoelectrochemical sensor. J Am Chem Soc 8:9723–9733

    Article  Google Scholar 

  • Rainieri S, Conlledo N, Larsen BK, Granby K, Barranco A (2018) Combined effects of microplastics and chemical contaminants on the organ toxicity of zebrafish (Danio rerio). Environ Res 162:135–143

    Article  CAS  PubMed  Google Scholar 

  • Reyes-Becerril M, Alamillo E, Sanchez TL, Ascencio VF, Perez UJ, Angulo C (2016) Leukocyte susceptibility and immune response against Vibrio parahaemolyticus in Totoaba macdonaldi. Dev Comp Immunol 65:258–267

    Article  CAS  PubMed  Google Scholar 

  • Rezg R, El-Fazaa S, Gharbi N et al (2014) Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int 64:83–90

    Article  CAS  PubMed  Google Scholar 

  • Riss TL, Moravec RA, Niles AL, Duellman S, Benink HA, Worzella TJ, Minor L (2016) Assay guidance manual (Last Update, November 20). Eli Lilly & Company and the national center for advancing translational sciences, (Chapter Cell Viability Assays)

  • Spanopoulos-Zarco M, Gracia-López V, Pacheco-Vega JM et al (2022) Reproductive performance of the Pacific red snapper Lutjanus peru supplemented with microalgae (Grammatophora sp.). J Appl Phycol 34:395–404

    Article  CAS  Google Scholar 

  • Subaramaniyam U, Allimuthu RS, Vappu S, RamalingamD BR, Paital B, Panda N, Rath PK, Ramalingam N, Sahoo DK (2023) Effects of microplastics, pesticides and nano-materials on fish health, oxidative stress and antioxidant defense mechanism. Front Physiol 14:1217666

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Chen M, Qiang L, Wu W, Yang J, Zhu L (2020) Toxicokinetics and bioaccumulation characteristics of bisphenol analogues in common carp (Cyprinus carpio). Ecotoxicol Environ Saf 15:110183

    Article  Google Scholar 

  • Wu M, Xu H, Yang M, Xu G (2011) Effects of chronic bisphenol A exposure on hepatic antioxidant parameters in medaka (Oryzias latipes). Toxicol Environ Chem 93:270–278

    Article  CAS  Google Scholar 

  • Yadav SS, Kumar R, Khare P, Tripathi M (2015) Oxidative stress biomarkers in the freshwater fish, heteropneustes fossilis (Bloch) exposed to sodium fluoride: antioxidant defense and role of ascorbic acid. Toxicol Int 22:71–6

  • Zapata AG (2024) The fish spleen. Fish Shellfish Immunol 10:109280

    Article  Google Scholar 

Download references

Acknowledgements

The commercial farm Earth Ocean Farms S.R.L.C.V., BCS, Mexico, kindly donated healthy juvenile Lutajus peru for this study. Tania Zenteno is member of the CYTED network RIESCOS (ref. 419RT0578). All samples were collected in accordance with international ethics guidelines and the Code of Ethics of the World Medical Association (Declaration of Helsinki). Authors acknowledge Veronica Sanchez and Alicia Esquivel for technical support and for their assistance in lab during this study, as well as Daniela Nuñez Garcia from CIBNOR for providing editorial comments.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

Martha Reyes-Becerril: contributed to the study conception and design. Martha Reyes Becerril conducted the experiment and material preparation. Martha Reyes-Becerril: sample collection and analysis. Martha Reyes-Becerril and Tania Zenteno Savin wrote the manuscript's first draft and commented on previous versions. Martha Reyes-Becerril and Tania Zenteno read and approved the final manuscript.

Corresponding author

Correspondence to Martha Reyes-Becerril.

Ethics declarations

Ethical Approval

The use and management of animals were conducted following the national (NOM-062-ZOO-1999 and NOM − 008-ZOO-1994) and the international bioethical protocols.

Consent to Participate

Not applicable.

Consent to Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Bisphenol A is a hazardous pollutant for seawater.

• BPA cause high cytotoxicity at 1000 and 10,000 µg/mL in marine fish leukocytes.

• BPA at 100 µg/mL cause cell viability >80% after 2h.

• ROS production is highly induced by BPA (100 µg/mL) in leukocytes.

• BPA at 100 µg/mL up-regulated apoptosis-related genes after 2 h in leukocytes.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reyes-Becerril, M., Zenteno-Savin, T. Bisphenol A Induces Reactive Oxygen Species Production and Apoptosis-Related Gene Expression in Pacific Red Snapper Lutjanus peru Leukocytes. Mar Biotechnol 26, 136–148 (2024). https://doi.org/10.1007/s10126-024-10284-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-024-10284-1

Keywords

Navigation