Skip to main content
Log in

Angiotensin II Type I Receptor—168A/G Polymorphism Is Associated with Increased the Risk of Glioma in Turkish Population

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Gliomas are the most common primary tumors of the Central Nervous System. Despite advances in the elucidation of molecular pathogenesis, gliomas still remain incurable. In the study, it was aimed to investigate the possible connection between ACE and AGTR1 polymorphisms with glioma pathogenesis and also the relationship of some angiogenic markers with gliomagenesis. In this respect, 96 glioma patients and 104 healthy controls were included in the study. To determine the effect of genetic polymorphisms on the predisposition of diffuse infiltrative glial tumors in the Turkish population, angiotensin-converting enzyme gene (ACE) insertion/deletion, angiotensin II receptor type 1 gene (AGTR1) ‒168A/G, ‒535C/T, ‒825T/A, and Vascular Endothelial Growth Factor gene (VEGF) +936C/T, ‒2578C/A polymorphisms were investigated by PCR-RFLP. Allele/genotype frequencies between patients and controls were determined. Besides, relative gene expressions of ACE, AGTR1, and VEGF were detected by real time-PCR, while ACE, VEGF, ET-1, eNOS, and NO levels were measured in both serum and tissue by ELISA. In AGTR1 ‒168A/G polymorphism, the risk of glioma in the AA genotype decreased, while increased by 2.27 times in the G allele. Allele frequency and genotype distributions of other polymorphisms were found similar between two groups. Serum levels of ACE, VEGF, eNOS, NO, and tissue levels of ACE, ET-1, eNOS, NO were also different between the patients and controls. ACE, AGTR1, and VEGF expressions in patient group were found significantly higher than in control one. These results provide the first evidence linking 168A/G polymorphism in AGTR1 gene with glioma risk in the Turkish population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

DATA AVAILABILITY

The datasets generated during and analyzed during the current study will be available from the corresponding author upon reasonable request.

REFERENCES

  1. Louis D.N., Perry A., Reifenberger G., von Deim-ling A., Figarella-Branger D., Cavenee W.K., Ohgaki H., Wiestler O.D., Kleihues P., Ellison D.W. 2016. The 2016 World Health Organization classification of tumors of the central nervous system: A summary. Acta Neuropathol. 131 (6), 803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  2. Studdy P.R., Lapworth R., Bird R. 1983. Angiotensin-converting enzyme and its clinical significance—a review. J. Clin. Pathol. 36 (8), 938‒947. https://doi.org/10.1136/jcp.36.8.938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rigat B., Hubert C., Alhenc-Gelas F., Cambien F., Corvol P., Soubrier F. 1990. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Invest. 86 (4), 1343–1346. https://doi.org/10.1172/JCI114844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Duncan J.A., Scholey J.W., Miller J.A. 2001. Angiotensin II type 1 receptor gene polymorphisms in humans: Physiology and pathophysiology of the genotypes. Curr. Opin. Nephrol. Hypertens. 10 (1), 111–116. https://doi.org/10.1097/00041552-200101000-00017

    Article  CAS  PubMed  Google Scholar 

  5. Munzenmaier D.H., Greene A.S. 1996. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension. 27 (3Pt2), 760–765. https://doi.org/10.1161/01.hyp.27.3.760

    Article  CAS  PubMed  Google Scholar 

  6. Uemura H., Ishiguro H., Nakaigawa N., Nagashima Y., Miyoshi Y., Fujinami K., Sakaguchi A., Kubota Y. 2003. Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: A possibility of tyrosine kinase inhibitor of growth factor. Mol. Cancer Ther. 2 (11), 1139–1147.

    CAS  PubMed  Google Scholar 

  7. Watson C.J., Webb N.J., Bottomley M.J., Brenchley P.E. 2000. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: Correlation with variation in VEGF protein production. Cytokine. 12 (8), 1232–1235. https://doi.org/10.1006/cyto.2000.0692

    Article  CAS  PubMed  Google Scholar 

  8. Salani D., Taraboletti G., Rosanò L., Di Cast-ro V., Borsotti P., Giavazzi R., Bagnato A. 2000. Endothelin-1 induces an angiogenic phenotype in cultured endothelial cells and stimulates neovascularization in vivo. Am. J. Pathol. 157 (5), 1703–1711. https://doi.org/10.1016/S0002-9440(10)64807-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kaur B., Khwaja F.W., Severson E.A., Matheny S.L., Brat D.J., Van Meir E.G. 2005. Hypoxia and the hypoxia-inducible-factor pathway in glioma growth and angiogenesis. Neuro Oncol. 7 (2), 134–153. https://doi.org/10.1215/S1152851704001115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fukumura D., Gohongi T., Kadambi A., Izumi Y., Ang J., Yun C.O., Buerk D.G., Huang P.L., Jain R.K. 2001. Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc. Natl. Acad. Sci. U. S. A. 98 (5), 2604–2609. https://doi.org/10.1073/pnas.041359198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brooks S.E., Gu X., Samuel S., Marcus D.M., Bartoli M., Huang P.L., Caldwell R.B. 2001. Reduced severity of oxygen-induced retinopathy in eNOS-deficient mice. Invest. Ophthalmol. Vis. Sci. 42 (1), 222–228.

    CAS  PubMed  Google Scholar 

  12. Asgharzadeh F., Hassanian S., Ferns G., Khazaei M., Hasanzadeh M. 2018. The therapeutic potential of angiotensin-converting enzyme and angiotensin receptor inhibitors in the treatment of colorectal cancer: Rational strategies and recent progress. Curr. Pharm. Des. 24 (39), 4652–4658. https://doi.org/10.2174/1381612825666190111145140

    Article  CAS  PubMed  Google Scholar 

  13. Lian M., Jiang H., Wang H., Guo S. 2015. Angiotensin-converting enzyme insertion/deletion gene polymorphisms is associated with risk of glioma in a Chinese population. J. Renin. Angiotensin. Aldosterone Syst. 16 (2), 443–447. https://doi.org/10.1177/1470320313495910

    Article  CAS  PubMed  Google Scholar 

  14. Pandith A.A., Qasim I., Zahoor W., Shah P., Bhat A.R. 2018. ACE I/D sequence variants but not MTHFR C677T, is strongly linked to malignant glioma risk and its variant DD genotype may act as a promising predictive biomarker for overall survival of glioma patients. Gene. 639, 62–68. https://doi.org/10.1016/j.gene.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  15. Benenemissi I., Sifi K., Sahli L., Semmam O., Abadi N., Satta D. 2019. Angiotensin-converting enzyme insertion/deletion gene polymorphisms and the risk of glioma in an Algerian population. Pan. Afr. Med. J. 32, 1–7. https://doi.org/10.11604/pamj.2019.32.197.15129

    Article  Google Scholar 

  16. Li J., Sima X., Zhao N. 2013. Studies on association between ACE I/D polymorphism and glioma. Chin. J. Neurosurg. Dis. Res. 12, 106–108.

    CAS  Google Scholar 

  17. Sun M., Fang Y., Ma S., Gao X., Sun Y. 2020. The genetic polymorphisms of angiotensin converting enzyme insertion / deletion and glioma susceptibility: A meta-analysis. J. Renin Angiotensin Aldosterone Syst. 21 (4), 1470320320963939. https://doi.org/10.1177/1470320320963939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Arrieta O., Guevara P., Escobar E., García-Navarrete R., Pineda B., Sotelo J. 2005. Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma. Br. J. Cancer. 92 (7), 1247–1252. https://doi.org/10.1038/sj.bjc.6602483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koh W.P., Yuan J.M., Van Den Berg D., Lee H.P., Yu M.C. 2005. Polymorphisms in angiotensin II type 1 receptor and angiotensin I-converting enzyme genes and breast cancer risk among Chinese women in Singapore. Carcinogenesis. 26 (2), 459–464. https://doi.org/10.1093/carcin/bgh309

    Article  CAS  PubMed  Google Scholar 

  20. Li R., Zhao Y., Fan W., Chen H., Chen Y., Liu Y., Chen G., Zhou K., Huang F., Mao Y., Zhou L., Lu D., Shugart Y.Y. 2011. Possible association between polymorphisms of human vascular endothelial growth factor A gene and susceptibility to glioma in a Chinese population. Int. J. Cancer. 128 (1), 166–175. https://doi.org/10.1002/ijc.25306

    Article  CAS  PubMed  Google Scholar 

  21. Jiang H., Lian M., Xie J., Li J., Wang M. 2013. Three single nucleotide polymorphisms of the vascular endothelial growth factor (VEGF) gene and glioma risk in a Chinese population. J. Int. Med. Res. 41 (5), 1484–1494. https://doi.org/10.1177/0300060513498667

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J., Yang J., Chen Y., Mao Q., Li S., Xiong W., Lin Y., Chen J., Ge J. 2016. Genetic Variants of VEGF (rs201963 and rs3025039) and KDR (rs7667298, rs2305948, and rs1870377) are associated with glioma risk in a Han Chinese population: A case-control study. Mol. Neurobiol. 53 (4), 2610–2618. https://doi.org/10.1007/s12035-015-9240-0

    Article  CAS  PubMed  Google Scholar 

  23. Linhares P., Viana-Pereira M., Ferreira M., Amorim J., Nabiço R., Pinto F., Costa S., Vaz R., Reis R.M. 2018. Genetic variants of vascular endothelial growth factor predict risk and survival of gliomas. Tumour Biol. 40 (3), 1010428318766273. https://doi.org/10.1177/1010428318766273

    Article  CAS  PubMed  Google Scholar 

  24. Juillerat-Jeanneret L., Celerier J., Bernasconi C.C., Nguyen G., Wostl W., Maerki H.P., Janzer R.C., Corvol P., Gasc J.M. 2004. Renin and angiotensinogen expression and functions in growth and apoptosis of human glioblastoma. Br. J. Cancer. 90 (5), 1059–1068. https://doi.org/10.1038/sj.bjc.6601646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bradshaw A.R., Wickremesekera A.C., Brasch H.D., Chibnall A.M., Davis P.F., Tan S.T., Itinteang T. 2016. Glioblastoma multiforme cancer stem cells express components of the renin–angiotensin system. Front. Surg. 3, 51. https://doi.org/10.3389/fsurg.2016.00051

    Article  PubMed  PubMed Central  Google Scholar 

  26. Han C.D., Ge W.S. 2016. Up-regulation of angiotensin-converting enzyme (ACE) enhances cell proliferation and predicts poor prognosis in laryngeal cancer. Med. Sci. Monit. 22, 4132–4138. https://doi.org/10.12659/msm.896933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang K., Mao T., He Z., Wu X., Peng Y., Chen Y., Dong Y., Ruan Z., Wang Z. 2019. Angiotensin I-converting enzyme gene plays a crucial role in the pathology of carcinomas in colorectal cancer. Artif. Cells Nanomed. Biotechnol. 47 (1), 2500–2506. https://doi.org/10.1080/21691401.2019.1626402

    Article  CAS  PubMed  Google Scholar 

  28. Mehranfard D., Perez G., Rodriguez A., Ladna J.M., Neagra C.T., Goldstein B., Carroll T., Tran A., Trivedi M., Speth R.C. 2021. Alterations in gene expression of renin-angiotensin system components and related proteins in colorectal cancer. J. Renin Angiotensin Aldosterone Syst. 2021, 9987115. https://doi.org/10.1155/2021/9987115

  29. Ibiş M., Yüksel O., Yilmaz G., Köklü S., Yilmaz F.M., Ertuğrul I., Uçar E., Altiparmak M.E. 2008. Serum angiotensin converting enzyme levels in pancreatic diseases. Hepatogastroenterology. 55 (86–87), 1814–1817.

    PubMed  Google Scholar 

  30. Beyazit F., Ayhan S., Celik H.T., Gungor T. 2015. Assessment of serum angiotensin-converting enzyme in patients with epithelial ovarian cancer. Arch. Gynecol. Obstet. 292 (2), 415–420. https://doi.org/10.1007/s00404-015-3661-x

    Article  CAS  PubMed  Google Scholar 

  31. Kardum D., Huskic J., Fabijanic D., Banic M., Buljevac M., Kjundzic M., Loncar B. 1999. Activity of serum angiotensin-converting enzyme as a tumor marker of hepatocellular carcinoma. Eur. J. Gastroenterol. Hepatol. 11 (11), 1209–1213. https://doi.org/10.1097/00042737-199911000-00004

    Article  CAS  PubMed  Google Scholar 

  32. Ohta T., Amaya K., Yi S., Kitagawa H., Kayahara M., Ninomiya I., Fushida S., Fujimura T., Nishimura G., Shimizu K., Miwa K. 2003. Angiotensin converting enzyme-independent, local angiotensin II-generation in human pancreatic ductal cancer tissues. Int. J. Oncol. 23 (3), 593–598

    CAS  PubMed  Google Scholar 

  33. Procházka J., Krepela E., Sedo A., Viklický J., Fiala P. 1991. Aminopeptidases and angiotensin I-converting enzyme activities in primary human lung tumors and lung parenchyma. Neoplasma. 38 (5), 501–508.

    PubMed  Google Scholar 

  34. Danilov S.M., Kadrev A.V., Kurilova O.V., Tikhomirova V.E., Kryukova O.V., Mamedov V.N., Kama-lov D.M., Danilova N.V., Okhobotov D.A., Gayful-lin N.M., Evdokimov V.V., Alekseev B.J., Kost O.A., Samokhodskaya L.M., Kamalov A.A. 2019. Tissue ACE phenotyping in prostate cancer. Oncotarget. 10 (59), 6349–6361. https://doi.org/10.18632/oncotarget.27276

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ganong W.F. 1984. The brain renin−angiotensin system. Annu. Rev. Physiol. 46, 17–31. https://doi.org/10.1146/annurev.ph.46.030184.000313

    Article  CAS  PubMed  Google Scholar 

  36. Arrieta O., Pineda-Olvera B., Guevara-Salazar P., Hernández-Pedro N., Morales-Espinosa D., Cerón-Lizarraga T.L., González-De la Rosa C.H., Rembao D., Segura-Pacheco B., Sotelo J. 2008. Expression of AT1 and AT2 angiotensin receptors in astrocytomas is associated with poor prognosis. Br. J. Cancer. 99 (1), 160–166. https://doi.org/10.1038/sj.bjc.6604431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arrieta O., Villarreal-Garza C., Vizcaíno G., Pineda B., Hernández-Pedro N., Guevara-Salazar P., Wegman-Ostrosky T., Villanueva-Rodríguez G., Gamboa-Domínguez A. 2015. Association between AT1 and AT2 angiotensin II receptor expression with cell proliferation and angiogenesis in operable breast cancer. Tumour Biol. 36 (7), 5627–5634. https://doi.org/10.1007/s13277-015-3235-3

    Article  CAS  PubMed  Google Scholar 

  38. Plate K.H., Breier G., Weich H.A., Risau W. 1992. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature. 359 (6398), 845–848. https://doi.org/10.1038/359845a0

    Article  CAS  PubMed  Google Scholar 

  39. Pietsch T., Valter M.M., Wolf H.K., Von Deimling A., Huang H.J., Cavenee W.K., Wiestler O.D. 1997. Expression and distribution of vascular endothelial growth factor protein in human brain tumors. Acta Neuropathol. 93 (2), 109–117. https://doi.org/10.1007/s004010050591

    Article  CAS  PubMed  Google Scholar 

  40. Samoto K., Ikezaki K., Ono M., Shono T., Kohno K., Kuwano M., Fukui M. 1995. Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res. 55 (5), 1189–1193.

    CAS  PubMed  Google Scholar 

  41. Li J.T., Yan Q., Yu H.L. 2009. Expression of VEGF and NGF in gliomas of human. Sichuan Da Xue Xue Bao Yi Xue Ban. 40 (3), 408–411.

    CAS  PubMed  Google Scholar 

  42. Nowacka A., Smuczyński W., Rość D., Woźniak-Dąbrowska K., Śniegocki M. 2018. Serum VEGF-A concentrations in patients with central nervous system (CNS) tumors. PLoS One. 13 (3), e0192395. https://doi.org/10.1371/journal.pone.0192395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chiorean R., Berindan-Neagoe I., Braicu C., Florian I.S., Leucuta D., Crisan D., Cernea V. 2014. Quantitative expression of serum biomarkers involved in angiogenesis and inflammation, in patients with glioblastoma multiforme: Correlations with clinical data. Cancer Biomark. 14 (2–3), 185–194. https://doi.org/10.3233/CBM-130310

    Article  CAS  PubMed  Google Scholar 

  44. Rafat N., Beck G.C., Schulte J., Tuettenberg J., Vajkoczy P. 2010. Circulating endothelial progenitor cells in malignant gliomas. J. Neurosurg. 112 (1), 43–49. https://doi.org/10.3171/2009.5.JNS081074

    Article  CAS  PubMed  Google Scholar 

  45. Takano S., Yoshii Y., Kondo S., Suzuki H., Maruno T., Shirai S., Nose T. 1996. Concentration of vascular endothelial growth factor in the serum and tumor tissue of brain tumor patients. Cancer Res. 56 (9), 2185–2190.

    CAS  PubMed  Google Scholar 

  46. Schmidt N.O., Westphal M., Hagel C., Ergün S., Stavrou D., Rosen E.M., Lamszus K. 1999. Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int. J. Cancer. 84 (1), 10–18. https://doi.org/10.1002/(sici)1097-0215(19990219)84:1<10::aid-ijc3>3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  47. Stiles J.D., Ostrow P.T., Balos L.L., Greenberg S.J., Plunkett R., Grand W., Heffner R.R.Jr. 1997. Correlation of endothelin-1 and transforming growth factor β1 with malignancy and vascularity in human gliomas. J. Neuropathol. Exp. Neurol. 56 (4), 435–439. https://doi.org/10.1097/00005072-199704000-00012

    Article  CAS  PubMed  Google Scholar 

  48. Abdel-Gawad I.A., Hassanein H.M., Bahgat N.A., Abdel Sattar M.A., El-Sissy A.H., Altaweel M.A., Helal A.M. 2008. Study of endothelin-1 and vascular endothelial growth factor in patients with cancer colon. J. Egypt. Natl. Canc. Inst. 20 (3), 216–223.

    PubMed  Google Scholar 

  49. Yildirim Y., Gunel N., Coskun U., Sancak B., Bukan N., Aslan S., Cetin A. 2008. Serum big endothelin-1 levels in female patients with breast cancer. Int. Immunopharmacol. 8 (8), 1119–1123. https://doi.org/10.1016/j.intimp.2008.03.023

    Article  CAS  PubMed  Google Scholar 

  50. Teng X.J., Liu R., Zhang Z.X., He J.F., Shen Z.X. 2008. Correlation of preoperative plasma levels of big endothelin-1 to prognosis of gastric carcinoma. Ai Zheng. 27 (1), 88–91.

    CAS  PubMed  Google Scholar 

  51. Pfab T., Stoltenburg-Didinger G., Trautner C., Godes M., Hocher B. 2004. The endothelin system in Morris hepatoma-7777: An endothelin receptor antagonist inhibits growth in vitro and in vivo. Br. J. Pharmacol. 141 (2), 215–222. https://doi.org/10.1038/sj.bjp.0705601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Alanen K., Deng D.X., Chakrabarti S. 2000. Augmented expression of endothelin-1, endothelin-3 and the endothelin-B receptor in breast carcinoma. Histopathology. 36 (2), 161–167. https://doi.org/10.1046/j.1365-2559.2000.00795.x

    Article  CAS  PubMed  Google Scholar 

  53. Zheng P.P., Hop W.C., Luider T.M., Sillevis Smitt P.A., Kros J.M. 2007. Increased levels of circulating endothelial progenitor cells and circulating endothelial nitric oxide synthase in patients with gliomas. Ann. Neurol. 62 (1), 40–48. https://doi.org/10.1002/ana.21151

    Article  CAS  PubMed  Google Scholar 

  54. Pan J.W., Zhan R.Y., Tong Y., Zhou Y.Q., Zhang M. 2005. Expression of endothelial nitric oxide synthase and vascular endothelial growth factor in association with neovascularization in human primary astrocytoma. J. Zhejiang Univ. Sci. B. 6 (7), 693–698. https://doi.org/10.1631/jzus.2005.B0693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mei K., Cai X.H., Du L., Chen Y.F., Huang S., Chen J., Yin X.D., Zhang Z.X., Zhao X., Zhou C.Y., Yu J.R. 2010. Basic Research Effect of nitric oxide derived from endothelial nitric oxide synthase (eNOS) on tumor angiogenesis. Chin. J. Cancer. 29 (1), 32–37. https://doi.org/10.5732/cjc.009.10246

    Article  CAS  PubMed  Google Scholar 

  56. Meena S.K., Kumar R., Sairoz. 2017. Serum nitric oxide and peroxynitrite in breast cancer patients. Int. J. Curr. Res. 9 (8), 55725–55727.

    Google Scholar 

  57. Ratajczak-Wrona W., Jablonska E., Marcinczyk M., Grabowska Z., Piotrowski L. 2022. Role of p38 MAPK pathway in induction of iNOS expression in neutrophils and peripheral blood mononuclear cells in patients with squamous cell carcinoma. J. Oral. Maxillofac. Surg. 67 (11), 2354–2363. https://doi.org/10.1016/j.joms.2009.04.030

    Article  Google Scholar 

  58. Ghosh R., Castelino R.L., Babu S.G., Banerjee B. 2021. Estimation of salivary and tissue nitric oxide levels in oral squamous cell carcinoma: A biochemical study. Eur. J. Ther. 27, 26–31.

    Article  Google Scholar 

  59. Sangle V.A., Chaware S.J., Kulkarni M.A., Ingle Y.C., Singh P., Pooja V.K. 2018. Elevated tissue nitric oxide in oral squamous cell carcinoma. J. Oral. Maxillofac. Pathol. 22 (1), 35–39. https://doi.org/10.4103/jomfp.JOMFP_27_16

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Prof. Ali Ergül and Umut Kibar for their contribution to primer design and selection of restriction enzymes and assistance in Real-Time PCR applications.

Funding

This study was supported financially by the Scientific and Technological Research Council of Turkey (TÜBİTAK; project no. 216S995).

Author information

Authors and Affiliations

Authors

Contributions

TT: Conceptualization, Formal Analysis, Investigation, Roles/Writing—Original Draft.

BÖ: Resources, Roles/Writing—Original Draft.

ÖHE: Conceptualization, Methodology, Resources, Supervision, Writing—Review & Editing.

AMK: Resources.

İIG: Investigation, Resources, Validation, Writing— Review & Editing.

MB: Resources.

AG: Conceptualization, Formal analysis, Funding Acquisition, Investigation, Methodology, Project Administration, Supervision, Writing—Review & Editing.

Corresponding author

Correspondence to A. Gönenç.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

The study was approved by the Clinical Research Ethics Committee of Abdurrahman Yurtaslan Ankara Oncology Training and Research Hospital with the decision number 189 dated December, 2015. All procedures involving people comply with the ethical standards of the institutional and/or national committee for research ethics and the 1964 Helsinki Declaration and its subsequent changes or comparable ethical standards. Informed written consent was achieved from all subjects included in the study according to the ethical standards of the Ethics Committee.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: CNS, Central Nervous System; ACE, Angiotensin Converting Enzyme; I/D, Insertion/Deletion; AGTR1, Angiotensin II Type I Receptor; AGTR2, Angiotensin II Type II Receptor; VEGF, Vascular Endothelial Growth Factor; NO, Nitric Oxide; ET-1, Endothelin-1; eNOS, Endothelial Nitric Oxide Synthase; WHO, World Health Organization; PCR-RFLP, Polymerase Chain Reaction Restriction Fragment Length Polymorphism; Touch down-PCR, Touch Down Polymerase Chain Reaction; UV, Ultraviolet; RE, Restriction Enzyme; PBS, Phosphate Buffer; PASS, Power Analysis and Sample Size.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turan, T., Özaydın, B., Emmez, Ö.H. et al. Angiotensin II Type I Receptor—168A/G Polymorphism Is Associated with Increased the Risk of Glioma in Turkish Population. Mol Biol 58, 216–232 (2024). https://doi.org/10.1134/S0026893324020158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324020158

Keywords:

Navigation