Skip to main content
Log in

Unsteady bioconvection microbial nanofluid flow in a revolving vertical cone with chemical reaction

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

This paper discusses the impact of unstable bioconvection microbial nanofluid drift with a revolving vertical funnel\(/\)cone in the spinning microbial nanofluid with a time-critical angular speed and chemical reaction, thermal radiation with the thermal, solute and microbial Biot numbers as the boundary conditions. The governing unsteady and the coupled partial differential equations equipped with non-linear terms are resolved mathematically using suitable similarity transformations. Further, these equations are analytically solved by the spectral quasilinearisation method (SQLM). The consequences of different physical constraints and other parameters are explained and analysed with the help of graphs. The surge of solute and microbial profiles was reflected in the rise of solutal Biot number and microbial Biot numbers, respectively, while the temperature profile of the fluid was enhanced for the increasing values of thermal, solutal and microbial Biot number parameters. The higher values of bioconvection Brownian motion increases the velocity and decreases the microbial profiles. The bioconvection Schmidt number and Peclet numbers enhance and discriminate the microbial profile correspondingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A J Chamkha and A R A Khaled, Int. J. Numer. Meth. Heat Fluid Flow 10(1), 94 (2000)

    Article  Google Scholar 

  2. M H Abolbashari et al, Adv. Powder Technol. 26(2), 542 (2015)

    Article  Google Scholar 

  3. K Kalidasan et al, Int. J. Mech. Sci. 135, 362 (2018)

    Article  Google Scholar 

  4. G Manjunatha et al, Int. J. Thermo-fluid Sci. Technol. 7, 20070101 (2020)

    Google Scholar 

  5. M Dhlamini et al, Int. J. Amb. Energy 43, 1495 (2022)

    Article  Google Scholar 

  6. A Musa et al, Waves Random Complex Media 1 (2022), https://doi.org/10.1080/17455030.2022.2084575

  7. Q-H Shi et al, Waves Random Complex Media 1 (2021), https://doi.org/10.1080/17455030.2021.1978591

  8. H Mondal et al, Waves Random Complex Media 1 (2022), https://doi.org/10.1080/17455030.2022.2055200

  9. I Nasser and H Duwairi, Int. J. Heat Technol. 34(2), 207 (2016)

    Article  Google Scholar 

  10. S Mishra et al, Propul. Power Res. 5, 326 (2016)

    Article  Google Scholar 

  11. M M Bhatti et al, Front. Phys. 95 (2020), https://doi.org/10.3389/fphy.2020.00095

  12. N S Khashi'ie et al, Int. Commun. Heat Mass Transfer. 118, 104866 (2020)

    Article  Google Scholar 

  13. A Aghbari et al, J. Mech. 35(6), 851 (2019)

    Article  Google Scholar 

  14. O P Meena, Heat Transfer 50(5), 4516 (2021)

    Article  Google Scholar 

  15. H Mondal et al, J. Nanofluids 4, 223 (2015)

    Article  Google Scholar 

  16. M M Rashidi et al, Adv. Mech. Eng. 10 (2014), https://doi.org/10.1155/2014/735939

  17. K Bhattacharyya et al, Int. J. Heat Mass Transfer 55, 2945 (2012)

    Article  Google Scholar 

  18. O D Makinde et al, Chem. Eng. Commun. 195, 1575 (2008)

    Article  Google Scholar 

  19. T Hayat et al, PLoS One 9(1), e83153 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. H Mondal et al, J. Appl. Comput. Mech. 6, 171 (2020)

    Google Scholar 

  21. T G Motsumi and O D Makinde, Phys. Scr. 86, 045003 (2012)

    Article  ADS  Google Scholar 

  22. O D Makinde, Chem. Eng. Commun. 198, 590 (2011)

    Article  Google Scholar 

  23. S Mishra et al, J. Thermal Eng. 5, 205 (2019)

    Article  Google Scholar 

  24. A Zaib et al, J. Porous Media 21(10), 911 (2018)

  25. A Rashad A and H A Nabwey, J. Taiwan Inst. Chem. Eng. 99, 9 (2019)

    Article  Google Scholar 

  26. N A A Latiff et al, AIP Conf. Proc. 1870, 040052 (2017)

    Article  Google Scholar 

  27. S Saleem et al, Math. Probl. Eng. 2019 (2019), https://doi.org/10.1155/2019/3478037

  28. W Khan et al, Int. J. Heat Mass Transfer 74, 285 (2014)

    Article  Google Scholar 

  29. H G Lee and J Kim, Eur. J. Mech.-B/Fluids 52, 120 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. A Alsaedi et al, Adv. Powder Technol. 28(1), 288 (2017)

    Article  Google Scholar 

  31. K Avinash et al, Defect Diffusion Forum 377, 127 (2017)

    Article  Google Scholar 

  32. S Mishra et al, J. Appl. Comput. Mech. 9(3), 804 (2023)

    Google Scholar 

  33. H S Takhar et al, Heat Mass Transfer 39, 297 (2003)

    Article  ADS  Google Scholar 

  34. M Dhlamini et al, Pramana – J. Phys. 96, 112 (2022)

    Article  ADS  Google Scholar 

  35. H Sithole et al, Int. J. Appl. Comput. Math. 5, 12 (2019)

    Article  MathSciNet  Google Scholar 

  36. G Sowmya et al, J. Appl. Math. Mech. (2023), https://doi.org/10.1002/zamm.202100526

    Article  Google Scholar 

  37. G Sowmya et al, Propuls. Power Res. 11(4), 527 (2022)

    Article  MathSciNet  Google Scholar 

  38. M Sheikholeslami et al, J. Mol. Liq. 193, 174 (2014)

    Article  Google Scholar 

  39. M Sheikholeslami and S A Shehzad, J. Heat Mass Transfer 106, 1261 (2017)

    Article  Google Scholar 

  40. M F M Basir et al, Chin. J. Phys. 65, 538 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  41. U Farooq et al, Sci. Rep. 12, 2952 (2022)

    Article  ADS  Google Scholar 

  42. M Mustafa et al, In. J. Heat Mass Transfer 108, 1340 (2017)

    Article  Google Scholar 

  43. S Parvin et al, Akademia Baru 12(8), 64 (2020)

    Google Scholar 

  44. S Zuhra et al, Adv. Mech. Eng. 12(1), 1 (2020)

    Article  Google Scholar 

  45. K Himasekhar et al, Int. Commu. in Heat and Mass Transfer 16, 99 (1989)

    Article  Google Scholar 

  46. D Anilkumar and S Roy, Appl. Math. Comput. 155, 545 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shweta Mishra.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Mondal, H. & Kundu, P.K. Unsteady bioconvection microbial nanofluid flow in a revolving vertical cone with chemical reaction. Pramana - J Phys 98, 12 (2024). https://doi.org/10.1007/s12043-023-02667-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-023-02667-1

Keywords

PACS Nos

Navigation