Skip to main content
Log in

Numerical methodology to model offshore systems composed of slender structures

  • Original
  • Published:
Archive of Applied Mechanics Aims and scope Submit manuscript

Abstract

Subsea systems for oil exploitation and renewable offshore energy generally employ cables, hoses, risers, umbilical and power energy cables, mooring lines, among other slender components. From the global modeling perspective, all such “lines” can be well represented by classes of structural models according to phenomena of interest for each analysis—eg.: bending/torsion and/or tension/compression loads. In this context, one is frequently interested in static and dynamic effects. Moreover, geometric nonlinearities, hydrodynamic loads and contact with the seabed can play an important role. The present work proposes a general and robust numerical methodology able to establish and analyze complete offshore systems, composed of numerous lines attached to a floating unit. Catenary, lazy-wave, vertical, or other geometric configurations can be considered for each line. The initial guess for the system configuration is produced by a set of analytical solutions, considering a multi-segment extensible catenary formulation. This is implemented into an in-house numerical finite element framework, which models and solves the statics and dynamics of the system. We employ geometrically exact beam and truss models, handling all external loads of interest and contact interactions with the seabed. Case studies following the proposed methodology are exemplified, discussing details on modeling aspects, such as comparing results with other tools/methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Chen, L., Basu, B., Nielsen, S.R.: A coupled finite difference mooring dynamics model for floating offshore wind turbine analysis. Ocean Eng. 162, 304–315 (2018)

    Article  Google Scholar 

  2. Hall, M., Buckham, B., Crawford, C., Nicoll, R.S.: The importance of mooring line model fidelity in floating wind turbine simulations. OCEANS'11 MTS/IEEE KONA, pp. 1–8, 2011

  3. Hall, M., Buckham, B., Crawford, C.: Evaluating the importance of mooring line model fidelity in floating offshore wind turbine simulations. Wind Energy 17(12), 1835–1853 (2014)

    Article  Google Scholar 

  4. Jeon, S., Cho, Y., Seo, M., Cho, W.J.J.R.: Dynamic response of floating substructure of spar-type offshore wind turbine with catenary mooring cables. Ocean Eng. 72, 356–364 (2013)

    Article  Google Scholar 

  5. Antonutti, R., Peyrard, C., Incecik, A., Ingram, D., Johanning, L.: Dynamic mooring simulation with Code_Aster with application to a floating wind turbine. Ocean Eng. 151, 366–377 (2018)

    Article  Google Scholar 

  6. Silveira, L., Martins, C.A.: A numerical method to solve the static problem of a catenary riser. In: Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering, 2004.

  7. Pesce, C., Aranha, J., Martins, C., Ricardo, O., Silva, S.: Dynamic Curvature in Catenary Risers at the touchdown point region: an experimental study and the analytical boundary-layer solution. Int. J. Offshore Polar Eng., vol. 8, no. 4, 1998.

  8. Cheng, Y., Tang, L., Fan, T.: Dynamic analysis of deepwater steel lazy wave riser with internal flow and seabed interaction using a nonlinear finite element method. Ocean Eng. 209(4), 107498 (2020)

    Article  Google Scholar 

  9. Ramos, R.J., Pesce, C.P.: A stability analysis of risers subjected to dynamic compression coupled with twisting. J. Offshore Mech. Arct. Eng. 125(3), 183–189 (2003)

    Article  Google Scholar 

  10. Wriggers, P., Gay Neto, A., Pimenta, P.M.: Modellierung von Kabelstrukturen und deren Verhalten bei Kontakt und Torsion/Modeling of cable structures under contact and torsion. Bauingenieur 90(5), 193–199 (2015)

    Article  Google Scholar 

  11. Gay Neto, A., Martins, C.A.: Structural stability of flexible lines in catenary configuration under torsion. Mar. Struct. 34, 16–40 (2013)

    Article  Google Scholar 

  12. Gay Neto, A., Martins, C.A., Pimenta, P.M.: Static analysis of offshore risers with a geometrically-exact 3D beam model subjected to unilateral contact. Comput. Mech. 53, 125–145 (2014)

    Article  MathSciNet  Google Scholar 

  13. Yu, Y., Xu, S., Yu, J., Xu, W., Xu, L., Xu, L.: Dynamic analysis of steel catenary riser on the nonlinear seabed using vector form intrinsic finite element method. Ocean Eng. 241, 109982 (2021)

    Article  Google Scholar 

  14. Rentschler, M.U., Adam, F., Chainho, P.: Design optimization of dynamic inter-array cable systems for floating offshore wind turbines. Renew. Sustain. Energy Rev. 111, 622–635 (2019)

    Article  Google Scholar 

  15. Rentschler, M.U.T., Adam, F., Chainho, P., Krügel, K., Vicente, P.C.: Parametric study of dynamic inter-array cable systems for floating offshore wind turbines. Marine Syst. Ocean Technol. 15(1), 16–25 (2020)

    Article  Google Scholar 

  16. Webster, R.: On the static analysis of structures with strong geometric nonlinearity. Comput. Struct. 11(1–2), 137–145 (1980)

    Article  Google Scholar 

  17. OpenFAST v.2.3.0. Available at: https://github.com/OpenFAST/openfast. Accessed in August 11, 2020.

  18. Masciola, J.J.A.R.M.: Implementation of a multisegmented, quasi-static cable model. Proceedings of the Twenty-Third International Offshore and Polar Engineering, 2013.

  19. Hall, M.: MoorDyn User’s Guide. Department of Mechanical Engineering, University of Maine, Orono (2015)

    Google Scholar 

  20. National Renewable Energy Laboratory.: OpenFast - FEAMooring Module. 3 October 2019. [Online]. Available: https://github.com/OpenFAST/openfast/tree/master/modules/feamooring. [Accessed 11 August 2020].

  21. OrcaFlex Interface Module.: 3 October 2019. [Online]. Available: https://github.com/OpenFAST/openfast/tree/master/modules/orcaflex-interface. [Accessed 11 August 2020].

  22. Wendt, F., Robertson, A., Jonkman, J., Andersen, M.T.: Verification and validation of the new dynamic mooring modules available in FAST v8. Presented at the Twenty-Sixth (2016) International Ocean and Polar Engineering Conference (ISOPE), 2016.

  23. Orcina.: OrcaFlex features and specifications. 2020. [Online]. Available: https://www.orcina.com/orcaflex/specification/. [Accessed 11 August 2020].

  24. Flexcom.: Flexcom Wind. 2020. [Online]. Available: http://18.214.7.44/floating-wind-turbine-module.html. [Accessed 11 August 2020].

  25. Simo, J.C.: A finite strain beam formulation. The three-dimensional dynamics. Part I. Comput. Methods Appl. Mech. Eng. 49(1), 55–70 (1985)

    Article  Google Scholar 

  26. da Costa e Silva, C., Maassen, S.F., Pimenta, P.M., Schröder, J.: A simple finite element for the geometrically exact analysis of Bernoulli–Euler rods. Comput. Mech. 65, 905–923 (2020)

    Article  MathSciNet  Google Scholar 

  27. Meier, C., Popp, A., Wall, W.A.: An objective 3D large deformation finite element formulation for geometrically exact curved Kirchhoff rods. Comput. Methods Appl. Mech. Eng. 278, 445–478 (2014)

    Article  MathSciNet  Google Scholar 

  28. Meier, C., Popp, A., Wall, W.A.: Geometrically exact finite element formulations for slender beams: Kirchhoff–Love theory versus Simo–Reissner theory. Archiv. Comput. Methods Eng. 26(1), 163–243 (2019)

    Article  MathSciNet  Google Scholar 

  29. Pimenta, P., Campello, E., Wriggers, P.: An exact conserving algorithm for nonlinear dynamics with rotational dof’s and general hyperelasticity. Part 1: Rods. Comput. Mech. 42, 715–732 (2008)

    Article  MathSciNet  Google Scholar 

  30. Meier, C., Grill, M.J., Wall, W.A., Popp, A.: Geometrically exact beam elements and smooth contact schemes for the modeling of fiber-based materials and structures. Int. J. Solids Struct. 154, 124–146 (2018)

    Article  Google Scholar 

  31. Gay Neto, A., Pimenta, P.M., Wriggers, P.: A master-surface to master-surface formulation for beam to beam contact. Part I: Frictionless interaction. Comput. Methods Appl. Mech. Eng. 303, 400–429 (2016)

    Article  MathSciNet  Google Scholar 

  32. Gay Neto, A., Pimenta, P.M., Wriggers, P.: A master-surface to master-surface formulation for beam to beam contact. Part II: Frictional interaction. Comput. Methods Appl. Mech. Eng. 319, 146–174 (2017)

    Article  MathSciNet  Google Scholar 

  33. Meier, C., Popp, A., Wall, W.: A finite element approach for the line-to-line contact interaction of thin beams with arbitrary orientation. Comput. Methods Appl. Mech. Eng. 308, 377–413 (2016)

    Article  MathSciNet  Google Scholar 

  34. Gay Neto, A.: Dynamics of offshore risers using a geometrically-exact beam model with hydrodynamic loads and contact with the seabed. Eng. Struct. 125, 438–454 (2016)

    Article  Google Scholar 

  35. Refachinho de Campos, P.R., Gay Neto, A.: Rigid Body formulation in a finite element context with contact interaction. Comput. Mech. 62, 1369–1398 (2018)

    Article  MathSciNet  Google Scholar 

  36. Amaral, G.A.: Analytical assessment of the mooring system stiffness, E. P. d. U. d. S. Paulo, Ed., Master Dissertation, 2020.

  37. Pesce, C.P., Fujarra, A.L.C., Simos, A.N., Tannuri, E.A.: Analytical and Closed Form Solutions for Deep Water Riser-Like Eigenvalue Problem. In: Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference, 1999.

  38. Wriggers, P.: Nonlinear Finite Element Methods. Springer-Verlag, Berlin Heidelberg (2008)

    Google Scholar 

  39. Bonet, J., Wood, R.: Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  40. Pimenta, P., Campello, E.: Geometrically nonlinear analysis of thin-walled space frames. In Proceedings of the Second European Conference on Computational Mechanics (ECCM), Krakow, 2001.

  41. Gay Neto, A., Pimenta, P., Wriggers, P.: Self-contact modeling on beams experiencing loop formation. Comput. Mech. 55, 193–208 (2015)

    Article  MathSciNet  Google Scholar 

  42. Gay Neto, A., Pimenta, P., Martins, C.: Hydrostatic pressure load in pipes modeled using beam finite elements: theoretical discussions and applications. J. Eng. Mech. 143(4), 04017003 (2017)

    Article  Google Scholar 

  43. Sparks, C.P.: The influence of tension, pressure and weight on pipe and riser deformations and stresses. J. Energy Resour. Technol. 1, 46–54 (1984)

    Article  Google Scholar 

  44. Faltinsen, O.: Sea Loads on Ships and Offshore Structures. The press syndicate of the University of Cambridge, Cambridge (1990)

    Google Scholar 

  45. Blevins, R.: Flow-induced vibration, 2nd ed., New York, 1990.

  46. Morison, J., O’Brien, M., Johnson, J., Schaaf, S.: The force exerted by surface waves on piles. Petrol. Trans. 2846(189), 149 (1950)

    Google Scholar 

  47. Bearman, P.W.: Vortex shedding from oscillating bluff bodies. Annu. Rev. Fluid Mech. 16(1), 195–222 (1984)

    Article  Google Scholar 

  48. Khlak, A., Williamson, C.H.K.: Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping. J. Fluids Struct. 13, 813–851 (1999)

    Article  Google Scholar 

  49. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19, 389–447 (2004)

    Article  Google Scholar 

  50. Williamson, C., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 413–455 (2004)

    Article  MathSciNet  Google Scholar 

  51. Williamson, C., Govardhan, R.: A brief review of recent results in vortex-induced vibrations. J. Wind Eng. Ind. Aerodyn. 96, 713–735 (2008)

    Article  Google Scholar 

  52. Rateiro, F., Gonçalves, R.T., Pesce, C.P., Fujarra, A.L.C., Franzini, G.R., Mendes, P.: A model scale experimental investigation on Vortex-Self Induced Vibrations (VSIV) of catenary risers. In: Proceedings of the ASME 2013 32th International Conference on Ocean, Offshore and Arctic Engineering, 9–14 June 2013.

  53. Fernandes, A., Mirzaeisefat, S., Cascão, L.: Fundamental behavior of Vortex Self Induced Vibration (VSIV). Appl. Ocean Res. 47, 183–191 (2014)

    Article  Google Scholar 

  54. Thorsen, M.J., Sævik, S., Larsen, C.M.: Non-linear time domain analysis of cross-flow vortex-induced vibrations. Mar. Struct. 51, 134–151 (2017)

    Article  Google Scholar 

  55. Pesce, C.P., Franzini, G.R., Fujarra, A.L.C., Gonçalves, R.T., Salles, R., Mendes, P.: further experimental investigations on vortex self-induced vibrations (VSIV) with a small-scale catenary riser model. In: Proceedings of the 36th International Conference on Ocean, Offshore Mechanics and Artic Engineering, 25–30 June 2017.

  56. Lin, W., Qiao, N.: Vibration and stability of an axially moving beam immersed in fluid. Int. J. Solids Struct. 45, 1445–1457 (2008)

    Article  Google Scholar 

  57. Musgrave, P.F.: Electro-hydro-elastic modeling of Structure-Borne Traveling Waves and their application to aquatic swimming motions. J. Fluids Struct. 102, 103230 (2021)

    Article  Google Scholar 

  58. Korelc, J., Wriggers, P.: Automation of Finite Element Methods. Springer International Publishing, Switzerland (2016)

    Book  Google Scholar 

  59. Gay Neto, A., Pimenta, P., Wriggers, P.: Contact between spheres and general surfaces. Comput. Methods Appl. Mech. Eng. 328, 686–716 (2018)

    Article  MathSciNet  Google Scholar 

  60. Gay Neto, A.: Simulation of mechanisms modeled by geometrically-exact beams using rodrigues rotation parameters. Comput. Mech. 59(3), 459–481 (2017)

    Article  MathSciNet  Google Scholar 

  61. Gay Neto, A.: Giraffe user’s manual—generic interface readily accessible for finite elements 2017. [Online]. Available: http://sites.poli.usp.br/p/alfredo.gay/.

Download references

Acknowledgements

The authors acknowledge Wood Group to provide Flexcom license free of cost, the Office of Naval Research-Global (ONR-G) for the NICOP Award N62909-16-1-2066 and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) under the Grants 304321/2021-4 and 305945/2020-3.

Author information

Authors and Affiliations

Authors

Contributions

A.G.N. contributed to coding, formulations, discussions and writing. G.R.M. contributed to coding, formulations, discussions and writing. G.A.A. contributed to coding, formulations, discussions and writing. G.R.F. contributed to discussions, formulations and writing.

Corresponding author

Correspondence to Alfredo Gay Neto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The methodologies used as benchmarks require some additional data. This appendix brings the values used in our case study.

As mentioned in Sect. 2.4 Gay Neto’s approach uses a horizontal force and an arbitrary time to suspend the line vertically and Antonutti’s proposal prescribes an artificial configuration to next perform a dynamic relaxation. The parameters used in the simulations of Sect. 4.1 are presented in Tables 

Table 9 Additional data to reproduce Gay Neto’s methodology

9 and

Table 10 Additional data to reproduce Antonutti’s methodology

10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gay Neto, A., Martins, G.R., do Amaral, G.A. et al. Numerical methodology to model offshore systems composed of slender structures. Arch Appl Mech (2024). https://doi.org/10.1007/s00419-023-02525-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00419-023-02525-x

Keywords

Navigation