Skip to content
Licensed Unlicensed Requires Authentication Published online by De Gruyter January 23, 2024

Luminescence of silver, thulium and ytterbium doped oxyfluoride glasses

  • Mikhail V. Shestakov EMAIL logo and Victor V. Moshchalkov

Abstract

Silver and lanthanide (Tm3+, Yb3+) doped oxyfluoride glasses have been prepared by melt-quenching method. The absorption of the glasses was measured in the range from 350 to 550 nm revealing the absorption edges of Ag nanoclusters and Tm3+ transition. The photoluminescence spectra of the glasses were detected in the range from 400 to 1100 nm under excitation in the range from 300 to 500 nm. The photoluminescence excitation spectra showed that Ag nanoclusters and Tm3+ ions can effectively harvest energy in UV-range and convert to visible and infrared (through emission by Yb3+ ions) ranges making the glasses perspective as white light emitters and solar spectrum downconverters.


Corresponding author: Mikhail V. Shestakov, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia, e-mail:
Article note: A collection of invited papers based on presentations at the Virtual Conference on Chemistry and its Applications 2023 (VCCA-2023).

Funding source: KU Leuven

Award Identifier / Grant number: PDM/16/108

Funding source: Vlaamse regering

Award Identifier / Grant number: Methusalem

Acknowledgments

This work received the financial support from Methusalem Funding of the Flemish Government (experimental part) and KU Leuven Post-Doctoral Mandate PDM/16/108 (data processing and analysis). The authors acknowledge some informational support from the Royal Society of Chemistry (England).

References

[1] M. Vasiliev, K. Alameh, M. Nur-E-Alam. Appl. Sci. 8, 849 (2018), https://doi.org/10.3390/app8060849.Search in Google Scholar

[2] M. Xia, J. Luo, C. Chen, H. Liu, J. Tang. Adv. Opt. Mater. 7, 1900851 (2019), https://doi.org/10.1002/adom.201900851.Search in Google Scholar

[3] E. Erol, N. Vahedigharehchopogh, O. Kıbrıslı, M. Ç. Ersundu, A. E. Ersundu. J. Phys.: Condens. Matter 33, 483001 (2021), https://doi.org/10.1088/1361-648X/ac22d9.Search in Google Scholar PubMed

[4] C. A. T. Laia, A. Ruivo, In Fluorescence in Industry, B. Pedras (Ed.), pp. 365–388, Springer International Publishing, Cham (2019).10.1007/4243_2019_12Search in Google Scholar

[5] S. Li, Y. Pan, W. Wang, Y. Li. J. Chem. Eng. 434, 134593 (2022), https://doi.org/10.1016/j.cej.2022.134593.Search in Google Scholar

[6] A. S. Kuznetsov, A. Nikitin, V. K. Tikhomirov, M.V. Shestakov, V.V. Moshchalkov. Appl. Phys. Lett. 102, 161916 (2013), https://doi.org/10.1063/1.4803448.Search in Google Scholar

[7] V. K. Tikhomirov, A. B. Seddon, M. Ferrari, M. Montagna, L. F. Santos, R. M. Almeida. Europhys. Lett. 64, 529 (2003), https://doi.org/10.1209/epl/i2003-00106-9.Search in Google Scholar

[8] W. Zheng, H. Zhu, R. Li, D. Tu, Y. Liu, W. Luo, X. Chen. Phys. Chem. Chem. Phys. 14, 6974 (2012), https://doi.org/10.1039/C2CP24044K.Search in Google Scholar PubMed

[9] G. Nemova, R. Kashyap. J. Opt. Soc. Am. B 29, 3034 (2012), https://doi.org/10.1364/JOSAB.29.003034.Search in Google Scholar

[10] E.S. de Lima Filho, K. V. Krishnaiah, Y. Ledemi, Y.-J. Yu, Y. Messaddeq, G. Nemova, R. Kashyap. Opt. Express 23, 4630 (2015), https://doi.org/10.1364/OE.23.004630.Search in Google Scholar PubMed

[11] K. V. Krishnaiah, Y. Ledemi, C. Genevois, E. Veron, X. Sauvage, S. Morency, E. S. De Lima Filho, G. Nemova, M. Allix, Y. Messaddeq, R. Kashyap. Opt. Mater. Express 7, 1980 (2017), https://doi.org/10.1364/OME.7.001980.Search in Google Scholar

[12] M.V. Shestakov, X.M. Chen, V. Kaydashev, W. Baeckelant, V.K. Tikhomirov, J. Vanacken, J. Hofkens, V.V. Moshchalkov. Opt. Mater. Express 4, 1227 (2014), https://doi.org/10.1364/OME.4.001227.Search in Google Scholar

[13] V.K. Tikhomirov, V.D. Rodríguez, A. Kuznetsov, D. Kirilenko, G. Van Tendeloo, V.V. Moshchalkov. Opt. Express 18, 22032 (2010), https://doi.org/10.1364/OE.18.022032.Search in Google Scholar PubMed

[14] H. El Hamzaoui, B. Capoen, I. Razdobreev, M. Bouazaoui. Mater. Res. Express 4, 076201 (2017), https://doi.org/10.1088/2053-1591/aa7ac6.Search in Google Scholar

[15] E.M. Sgibnev, N.V. Nikonorov, A.I. Ignat’ev. Opt. Spectrosc. 122, 133 (2017), https://doi.org/10.1134/S0030400X1701026X.Search in Google Scholar

[16] Y. Shi, S. Ye, J. Yu, H. Liao, J. Liu, D. Wang. Opt. Express 27, 38159 (2019), https://doi.org/10.1364/OE.380860.Search in Google Scholar PubMed

[17] I.I. Kindrat, B.V. Padlyak, B. Kukliński, A. Drzewiecki, V.T. Adamiv. J. Lumin. 213, 290 (2019), https://doi.org/10.1016/j.jlumin.2019.05.045.Search in Google Scholar

[18] C. Yu, Z. Yang, J. Zhao, J. Zhu, A. Huang, J. Qiu, Z. Song, D. Zhou. J. Alloys Compd. 748, 717 (2018), https://doi.org/10.1016/j.jallcom.2018.03.191.Search in Google Scholar

[19] M.V. Shestakov, M. Meledina, S. Turner, V.K. Tikhomirov, N. Verellen, V.D. Rodríguez, J.J. Velázquez, G. Van Tendeloo, V.V. Moshchalkov. J. Appl. Phys. 114, 073102 (2013), https://doi.org/10.1063/1.4818830.Search in Google Scholar

[20] V.K. Tikhomirov, T. Vosch, E. Fron, V.D. Rodríguez, J.J. Velázquez, D. Kirilenko, G. Van Tendeloo, J. Hofkens, M. Van Der Auweraer, V.V. Moshchalkov. RSC Adv. 2, 1496 (2012), https://doi.org/10.1039/C1RA01026C.Search in Google Scholar

[21] W. Van Bommel. Interior Lighting: Fundamentals, Technology and Application, pp. 25–31, Springer International Publishing, Cham (2019).10.1007/978-3-030-17195-7_2Search in Google Scholar

[22] C. Li, G. Cui, M. Melgosa, X. Ruan, Y. Zhang, L. Ma, K. Xiao, M.R. Luo. Opt. Express 24, 14066 (2016), https://doi.org/10.1364/OE.24.014066.Search in Google Scholar PubMed

[23] N.T. Cuong, V.K. Tikhomirov, L.F. Chibotaru, A. Stesmans, V.D. Rodríguez, M.T. Nguyen, V.V. Moshchalkov. J. Chem. Phys. 136, 174108 (2012), https://doi.org/10.1063/1.4707709.Search in Google Scholar PubMed

[24] J.J. Velázquez, V.K. Tikhomirov, L.F. Chibotaru, N.T. Cuong, A.S. Kuznetsov, V.D. Rodríguez, M.T. Nguyen, V.V. Moshchalkov. Opt. Express 20, 13582 (2012), https://doi.org/10.1364/OE.20.013582.Search in Google Scholar PubMed

[25] A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov. Mater. Lett. 92, 4 (2013), https://doi.org/10.1063/1.4803448.Search in Google Scholar

[26] A.S. Kuznetsov, V.K. Tikhomirov, V.V. Moshchalkov. Opt. Express 20, 21576 (2012), https://doi.org/10.1364/OE.20.021576.Search in Google Scholar PubMed

[27] H. Sahoo. J. Photochem. Photobiol. C: Photochem. Rev. 12, 20 (2011), https://doi.org/10.1016/j.jphotochemrev.2011.05.001.Search in Google Scholar

[28] E. Lerner, T. Cordes, A. Ingargiola, Y. Alhadid, S. Chung, X. Michalet, S. Weiss. Science 359, eaan1133 (2018), https://doi.org/10.1126/science.aan1133.Search in Google Scholar PubMed PubMed Central

[29] Y. Wang, X. Liu, Q. Wang, M. Quick, S. A. Kovalenko, Q. Chen, N. Koch, N. Pinna. Angew. Chem. 132, 7822 (2020), https://doi.org/10.1002/ange.201915074.Search in Google Scholar

[30] S. Comby, F. Gumy, J.-C. G. Bünzli, T. Saraidarov, R. Reisfeld. Chem. Phys. Lett. 432, 128 (2006), https://doi.org/10.1016/j.cplett.2006.10.046.Search in Google Scholar

[31] K.V. Krishnaiah, E. Soares De Lima Filho, Y. Ledemi, G. Nemova, Y. Messaddeq, R. Kashyap. Sci. Rep. 6, 21905 (2016), https://doi.org/10.1038/srep21905.Search in Google Scholar PubMed PubMed Central

[32] C. Wei, D. Xu, Z. Yang, Y. Jia, X. Li, J. Sun. RSC Adv. 9, 27817 (2019), https://doi.org/10.1039/C9RA04727A.Search in Google Scholar

[33] P. Xiong, M. Peng. J. Mater. Chem. C 7, 8303 (2019), https://doi.org/10.1039/C9TC02378J.Search in Google Scholar

[34] J. J. Schuyt, G.V.M. Williams, S.V. Chong. Opt. Mater. 133, 112926 (2022), https://doi.org/10.1016/j.optmat.2022.112926.Search in Google Scholar

[35] A.A. El-Maaref, E.A.A. Wahab, Kh.S. Shaaban, M. Abdelawwad, M.S.I. Koubisy, J. Börcsök, E.S. Yousef. Spectrochim. Acta A Mol. Biomol. Spectrosc. 242, 118774 (2020), https://doi.org/10.1016/j.saa.2020.118774.Search in Google Scholar PubMed

[36] N. Spector, R. Reisfeld, L. Boehm. Chem. Phys. Lett. 49, 49 (1977), https://doi.org/10.1016/0009-2614(77)80439-9.Search in Google Scholar

[37] R.A.S. Ferreira, E. Mamontova, A.M.P. Botas, M. Shestakov, J. Vanacken, V. Moshchalkov, Y. Guari, L.F. Chibotaru, D. Luneau, P.S. André, J. Larionova, J. Long, L.D. Carlos. Adv. Opt. Mater. 9, 2101495 (2021), https://doi.org/10.1002/adom.202101495.Search in Google Scholar

[38] T. Tsuboi. J. Electrochem. Soc. 147, 1997 (2000), https://doi.org/10.1149/1.1393474.Search in Google Scholar

[39] H. Amano, R. Collazo, C.D. Santi, S. Einfeldt, M. Funato, J. Glaab, S. Hagedorn, A. Hirano, H. Hirayama, R. Ishii, Y. Kashima, Y. Kawakami, R. Kirste, M. Kneissl, R. Martin, F. Mehnke, M. Meneghini, A. Ougazzaden, P.J. Parbrook, S. Rajan, P. Reddy, F. Römer, J. Ruschel, B. Sarkar, F. Scholz, L.J. Schowalter, P. Shields, Z. Sitar, L. Sulmoni, T. Wang, T. Wernicke, M. Weyers, B. Witzigmann, Y.-R. Wu, T. Wunderer, Y. Zhang. J. Phys. D: Appl. Phys. 53, 503001 (2020), https://doi.org/10.1088/1361-6463/aba64c.Search in Google Scholar

[40] R. Datt, S. Bishnoi, D. Hughes, P. Mahajan, A. Singh, R. Gupta, S. Arya, V. Gupta, W.C. Tsoi. Sol. RRL 6, 2200266 (2022), https://doi.org/10.1002/solr.202200266.Search in Google Scholar

[41] M.B. De La Mora, O. Amelines-Sarria, B.M. Monroy, C.D. Hernández-Pérez, J.E. Lugo. Sol. Energy Mater. Sol. Cells 165, 59 (2017), https://doi.org/10.1016/j.solmat.2017.02.016.Search in Google Scholar

Published Online: 2024-01-23

© 2024 IUPAC & De Gruyter

Downloaded on 3.5.2024 from https://www.degruyter.com/document/doi/10.1515/pac-2023-1106/html
Scroll to top button