Skip to main content
Log in

Integrating supplier selection decisions into an inventory location problem for designing the supply chain network

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

This paper proposes a novel Inventory-Location problem that integrates supplier selection decisions to design a three-echelon supply chain network, under a continuous (s,Q) inventory control policy at the warehouses. In this problem, a set of warehouses must be selected within a set of potential locations to serve several customers or demand zones, additionally involving the selection of the suppliers for fulfilling incoming orders from the located warehouses. The optimal solution must be determined while minimizing total system costs including supplier selection, transportation (i.e., suppliers-warehouses and warehouses-customers), inventory (i.e., cycle and safety stock), and warehouse location costs. A key element of the problem is the consideration of variable lead-times for the warehouses, which are dependent on the selection of the supplier that serve them, thus increasing model complexity. Accordingly, an efficient algorithm based on the Generalized Benders Decomposition is developed and implemented to solve the proposed Mixed Integer, Nonlinear, Nonconvex, Programming Model. The proposed solution approach relies on a convenient model formulation and decomposition that yields a Mixed Integer Linear master problem and a continuous, convex subproblem. A wide set of medium-sized synthetic instances are optimally solved in affordable times, denoting the efficiency and effectiveness of the proposed model along with the proposed solution approach. Significant scientific and managerial insights are provided and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data avalibility

Enquiries about data availability should be directed to the authors.

References

  • Aǧrali S, Geunes J, Taşkin ZC (2012) A facility location model with safety stock costs: analysis of the cost of single-sourcing requirements. J Glob Optim 54(3):551–581

    MathSciNet  Google Scholar 

  • Amid A, Ghodsypour SH, O’Brien C (2006) Fuzzy multiobjective linear model for supplier selection in a supply chain. Int J Prod Econ 104(2):394–407

    Google Scholar 

  • Amid A, Ghodsypour SH, O’Brien C (2011) A weighted maxmin model for fuzzy multi-objective supplier selection in a supply chain. Int J Prod Econ 131(1):139–145

    Google Scholar 

  • Amiri-Aref M, Klibi W, Babai MZ (2018) The multi-sourcing location inventory problem with stochastic demand. Eur J Oper Res 266(1):72–87

    MathSciNet  Google Scholar 

  • Araya-Sassi C, Miranda PA, Paredes-Belmar G (2018) Lagrangian relaxation for an inventory location problem with periodic inventory control and stochastic capacity constraints. Math Probl Eng. https://doi.org/10.1155/2018/8237925

    Article  MathSciNet  Google Scholar 

  • Axsäter S (2015) Inventory control, vol 225. Springer, Cham

    Google Scholar 

  • Baron O, Milner J, Naseraldin H (2011) Facility location: a robust optimization approach. Prod Oper Manag 20(5):772–785

    Google Scholar 

  • Bashiri M, Tabrizi MM (2010) Supply chain design: a holistic approach. Expert Syst Appl 37(1):688–693

    Google Scholar 

  • Benders JF (1962) Partitioning procedures for solving mixed-variables programming problems. Numer Math 4(1):238–252

    MathSciNet  Google Scholar 

  • Benyoucef L, Xie X, Tanonkou GA (2013) Supply chain network design with unreliable suppliers: a Lagrangian relaxation-based approach. Int J Prod Res 51(21):6435–6454

    Google Scholar 

  • Bhutta KS, Huq F, Frazier G, Mohamed Z (2003) An integrated location, production, distribution and investment model for a multinational corporation. Int J Prod Econ 86:201–216. https://doi.org/10.1016/S0925-5273(03)00046-X

    Article  Google Scholar 

  • Birge JR, Louveaux F (2011) Introduction to stochastic programming. Springer series in operations research and financial engineering, vol 49. Springer, New York, NY

    Google Scholar 

  • Bradley JR, Arntzen BC (1999) Inventory in seasonal demand environments. Oper Res 47(6):795–806

    Google Scholar 

  • Burke GJ, Carrillo JE, Vakharia AJ (2009) Sourcing decisions with stochastic supplier reliability and stochastic demand. Prod Oper Manag 18(4):475–484

    Google Scholar 

  • Cabrera G, Miranda PA, Cabrera E, Soto R, Crawford B, Rubio JM, Paredes F (2013) Solving a novel inventory location model with stochastic constraints and (R, s, S) inventory control policy. Math Probl Eng 2013(Dc):1–12

    MathSciNet  Google Scholar 

  • Cárdenas-Barrón LE, Melo RA, Santos MC (2021) Extended formulation and valid inequalities for the multi-item inventory lot-sizing problem with supplier selection. Comput Oper Res 130:105234

    MathSciNet  Google Scholar 

  • Chen Q, Li X, Ouyang Y (2011) Joint inventory-location problem under the risk of probabilistic facility disruptions. Transp Res Part B Methodol 45(7):991–1003

    Google Scholar 

  • Christopher M (2005) Logistics and supply chain management: creating value-added networks. Prentice Hall, London, p 305

    Google Scholar 

  • Coyle JJ, John J, Bardi EJ, Langley CJ (2003) The management of business logistics: a supply chain perspective. South-Western/Thomson Learning, Mason

    Google Scholar 

  • Current J, Min H, Schilling D (1990) Multiobjective analysis of facility location decisions. Eur J Oper Res 49(3):295–307

    Google Scholar 

  • Darmawan A, Wong H, Thorstenson A (2021) Supply chain network design with coordinated inventory control. Transp Res Part E Logist Transp Rev 145(2):102168

    Google Scholar 

  • Daskin MS, Coullard CR, Shen ZJM (2002) An inventory-location model: formulation, solution algorithm and computational results. Ann Oper Res 110:83–106. https://doi.org/10.1023/A:1020763400324

    Article  MathSciNet  Google Scholar 

  • de Treville S, Schürhoff N, Trigeorgis L, Avanzi B (2014) Optimal sourcing and lead-time reduction under evolutionary demand risk. Prod Oper Manag 23(12):2103–2117

    Google Scholar 

  • de Vries H, van de Klundert J, Wagelmans APM (2020) The roadside healthcare facility location problem a managerial network design challenge. Prod Oper Manag 29(5):1165–1187

    Google Scholar 

  • Diabat A, Battaïa O, Nazzal D (2015) An improved Lagrangian relaxation-based heuristic for a joint location-inventory problem. Comput Oper Res 61:170–178

    MathSciNet  Google Scholar 

  • Dönmez Z, Kara BY, Karsu Ö, Saldanha-da-Gama F (2021) Humanitarian facility location under uncertainty: critical review and future prospects. Omega 102:102393

    Google Scholar 

  • Drezner T (2014) A review of competitive facility location in the plane. Logist Res 7(1):114

    ADS  MathSciNet  Google Scholar 

  • Eiselt HA, Marianov V (2011) Foundations of location analysis, vol 155. Springer, New York, NY

    Google Scholar 

  • Eiselt HA, Marianov V (2015) Applications of location analysis, vol 232. Springer, Berlin

    Google Scholar 

  • Emirhüseyinoğlu G, Ekici A (2019) Dynamic facility location with supplier selection under quantity discount. Comput Ind Eng 134(March):64–74

    Google Scholar 

  • Erlebacher SJ, Meller RD (2000) The interaction of location and inventory in designing distribution systems. IIE Trans 32(2):155–166

    Google Scholar 

  • Escalona P, Ordóñez F, Marianov V (2015) Joint location-inventory problem with differentiated service levels using critical level policy. Transp Res Part E Logist Transp Rev 83:141–157

    Google Scholar 

  • Farahani RZ, Rashidi Bajgan H, Fahimnia B, Kaviani M (2015) Location-inventory problem in supply chains: a modelling review. Int J Prod Res 53(12):3769–3788

    Google Scholar 

  • Farahani RZ, Fallah S, Ruiz R, Hosseini S, Asgari N (2019) OR models in urban service facility location: a critical review of applications and future developments. Eur J Oper Res 276(1):1–27

    MathSciNet  Google Scholar 

  • Feng Q, Shi R (2012) Sourcing from multiple suppliers for price-dependent demands. Prod Oper Manag 21(3):547–563

    Google Scholar 

  • Gebennini E, Gamberini R, Manzini R (2009) An integrated production-distribution model for the dynamic location and allocation problem with safety stock optimization. Int J Prod Econ 122(1):286–304

    Google Scholar 

  • Gen M, Syarif A (2005) Hybrid genetic algorithm for multi-time period production/distribution planning. Comput Ind Eng 48(4):799–809

    Google Scholar 

  • Geoffrion AM (1972) Generalized benders decomposition. J Optim Theory Appl 10(4):237–260

    MathSciNet  Google Scholar 

  • Geoffrion A, McBride R (1978) Lagrangean relaxation applied to capacitated facility location problems. AIIE Trans 10(1):40–47

    Google Scholar 

  • Georgiadis G, Rajaram K (2013) The retail planning problem under demand uncertainty. Prod Oper Manag 22(5):1200–1213

    Google Scholar 

  • Ghassemi A, Asl-Najafi J, Yaghoubi S (2018) A dynamic bi-objective closed-loop supply chain network design considering supplier selection and remanufacturer subcontractors. Uncertain Supply Chain Manag 6:117–134

    Google Scholar 

  • Guerrero WJ, Prodhon C, Velasco N, Amaya CA (2013) Hybrid heuristic for the inventory location-routing problem with deterministic demand. Int J Prod Econ 146(1):359–370

    Google Scholar 

  • Guerrero Campanur A, Olivares-Benitez E, Miranda PA, Perez-Loaiza RE, Ablanedo-Rosas JH (2018) Design of a Logistics Nonlinear System for a Complex, Multiechelon, Supply Chain Network with Uncertain Demands. Complexity 2018:1–16

    Google Scholar 

  • Hajipour V, Niaki STA, Akhgar M, Ansari M (2021) The healthcare supply chain network design with traceability: A novel algorithm. Comput Ind Eng 161(August):107661

    Google Scholar 

  • Haq AN, Kannan G (2006) Design of an integrated supplier selection and multi-echelon distribution inventory model in a built-to-order supply chain environment. Int J Prod Res 44(10):1963–1985

    Google Scholar 

  • Harris FW (1913) How many parts to make at once. Factory Mag Manag 10(2):135–136

    MathSciNet  Google Scholar 

  • Jayaraman V (1998) Transportation, facility location and inventory issues in distribution network design. Int J Oper Prod Manag 18(5):471–494

    Google Scholar 

  • Khalilzadeh M, Derikvand H (2018) A multi-objective supplier selection model for green supply chain network under uncertainty. J Model Manag 13(3):605–625

    Google Scholar 

  • Kirschstein T, Meisel F (2019) A multi-period multi-commodity lot-sizing problem with supplier selection, storage selection and discounts for the process industry. Eur J Oper Res 279(2):393–406

    MathSciNet  Google Scholar 

  • Kuderinova N, Rebezov M, Zhenzhebir V, Belousova M, Odinokova E, Burlankov P, Antonova V, Kushnir K, Rotanov E (2021) Optimizing the combined problem of facility location and multi-objective supplier selection using a comprehensive benchmarking method. Ind Eng Manag Syst 20(2):248–257

    Google Scholar 

  • Kumar SK, Tiwari MK (2013) Supply chain system design integrated with risk pooling. Comput Ind Eng 64(2):580–588

    Google Scholar 

  • Lee K, Ozsen L (2020) Tabu search heuristic for the network design model with lead time and safety stock considerations. Comput Ind Eng 148(August):106717

    Google Scholar 

  • Liao Z, Rittscher J (2007) A multi-objective supplier selection model under stochastic demand conditions. Int J Prod Econ 105(1):150–159

    Google Scholar 

  • Lin YH, Tian Q, Zhao Y (2022) Locating facilities under competition and market expansion: formulation, optimization, and implications. Prod Oper Manag 31(7):3021–3042

    Google Scholar 

  • List GF, Mirchandani PB, Turnquist MA, Zografos KG (1991) Modeling and analysis for hazardous materials transportation. Risk analysis, routing/scheduling and facility location. Transp Sci 25(2):100–114

    Google Scholar 

  • Liu Y, Dehghani E, Jabalameli MS, Diabat A, Lu CC (2020) A coordinated location-inventory problem with supply disruptions: a two-phase queuing theory–optimization model approach. Comput Ind Eng 142(December 2019):106326

    Google Scholar 

  • Melo MT, Nickel S, Saldanha-da-Gama F (2009) Facility location and supply chain management—a review. Eur J Oper Res 196(2):401–412

    MathSciNet  Google Scholar 

  • Miranda PA, Garrido RA (2004) Incorporating inventory control decisions into a strategic distribution network design model with stochastic demand. Transp Res Part E Logist Transp Rev 40(3):183–207

    Google Scholar 

  • Miranda PA, Garrido RA (2006) A simultaneous inventory control and facility location model with stochastic capacity constraints. Networks Spat Econ 6(1):39–53

    MathSciNet  Google Scholar 

  • Miranda PA, Garrido RA (2008) Valid inequalities for Lagrangian relaxation in an inventory location problem with stochastic capacity. Transp Res Part E Logist Transp Rev 44(1):47–65

    Google Scholar 

  • Miranda PA, Garrido RA (2009) Inventory service-level optimization within distribution network design problem. Int J Prod Econ 122(1):276–285

    Google Scholar 

  • Miranda PA, Tapia-Ubeda FJ, Hernandez V, Cardenas H, Lopez-Campos M (2019) A simulation based modelling approach to jointly support and evaluate spare parts supply chain network and maintenance system. IFAC-PapersOnLine 52(13):2231–2236

    Google Scholar 

  • Miranda PA, Cabrera G (2010) Inventory location problem with stochastic capacity constraints under periodic review ( R , s , S ). In: International conference on industrial logistics - logistics and sustainability, pp 289–296.

  • Mota B, Gomes MI, Carvalho A, Barbosa-Povoa AP (2018) Sustainable supply chains: an integrated modeling approach under uncertainty. Omega 77:32–57

    Google Scholar 

  • Mourits M, Evers JJM (1995) Distribution network design an integrated planning support framework. Int J Phys Distrib Logist Manag 25(5):43–57

    Google Scholar 

  • Nasiri GR, Kalantari M, Karimi B (2021) Fast-moving consumer goods network design with pricing policy in an uncertain environment with correlated demands. Comput Ind Eng 153(November 2020):106997

    Google Scholar 

  • Ortiz-Astorquiza C, Contreras I, Laporte G (2017) Formulations and approximation algorithms for multilevel uncapacitated facility location. INFORMS J Comput 29(4):767–779

    MathSciNet  Google Scholar 

  • Ortiz-Astorquiza C, Contreras I, Laporte G (2018) Multi-level facility location problems. Eur J Oper Res 267(3):791–805

    MathSciNet  Google Scholar 

  • Ortiz-Astorquiza C, Contreras I, Laporte G (2019) An exact algorithm for multilevel uncapacitated facility location. Transp Sci 53(4):1085–1106

    Google Scholar 

  • Owen SH, Daskin MS (1998) Strategic facility location: a review. Eur J Oper Res 111(3):423–447

    Google Scholar 

  • Ozsen L, Daskin MS, Coullard CR (2009) Facility location modeling and inventory management with multisourcing. Transp Sci 43(4):455–472

    Google Scholar 

  • Perez Loaiza RE, Olivares-Benitez E, Miranda Gonzalez PA, Guerrero Campanur A, Martinez Flores JL (2017) Supply chain network design with efficiency, location, and inventory policy using a multiobjective evolutionary algorithm. Int Trans Oper Res 24(1–2):251–275

    MathSciNet  Google Scholar 

  • Porteus E (2002) Foundations of stochastic inventory theory, vol 26. Standford University Press, Redwood City

    Google Scholar 

  • Pourhejazy P, Kwon O (2016) The new generation of operations research methods in supply chain optimization: a review. Sustainability 8(10):1033

    Google Scholar 

  • ReVelle CS, Swain RW (1970) Central facilities location. Geogr Anal 2(1):30–42

    Google Scholar 

  • Rienkhemaniyom K (2015) A multi-criteria model for supplier selection and supply chain network design. Chiang Mai Univ J Nat Sci 14(4):389–413

    Google Scholar 

  • Ross A, Khajehnezhad M, Otieno W, Aydas O (2017) Integrated location-inventory modelling under forward and reverse product flows in the used merchandise retail sector: a multi-echelon formulation. Eur J Oper Res 259(2):664–676

    MathSciNet  Google Scholar 

  • Şahin G, Süral H (2007) A review of hierarchical facility location models. Comput Oper Res 34(8):2310–2331

    MathSciNet  Google Scholar 

  • Sajedinejad A, Chaharsooghi SK (2018) Multi-criteria supplier selection decisions in supply chain networks : a multi-objective optimization approach. Ind Eng Manag Syst 17(3):392–406

    Google Scholar 

  • Shahabi M, Tafreshian A, Unnikrishnan A, Boyles SD (2018) Joint production–inventory–location problem with multi-variate normal demand. Transp Res Part B Methodol 110:60–78

    Google Scholar 

  • Shavandi H, Bozorgi B. (n.d.) Developing a location-inventory model under fuzzy environment.

  • Shen Z-JM, Coullard C, Daskin MS (2003) A joint location-inventory model. Transp Sci 37(1):40–55

    Google Scholar 

  • Simchi-Levi D, Kaminsky P, Simchi-Levi E (2003) Designing and managing the supply chain: concepts, strategies, and case studies. McGraw-Hill/Irwin, Irvine

    Google Scholar 

  • Simchi-Levi D, Chen X, Bramel J (1997) The logic of logistics—simchi, Levi, Bramel.pdf.

  • Snyder LV (2006) Facility location under uncertainty: a review. IIE Trans Institute Ind Eng 38(7):547–564

    Google Scholar 

  • Snyder LV, Daskin MS, Teo CP (2007) The stochastic location model with risk pooling. Eur J Oper Res 179(3):1221–1238

    Google Scholar 

  • Tanonkou GA, Benyoucef L, Xie X (2006) Integrated facility location and supplier selection decisions in a distribution network design. In: 2006 IEEE international conference on service operations and logistics, and informatics, vol 44. IEEE, pp 399–404

  • Tapia-Ubeda FJ, Miranda PA, Macchi M (2018a) A Generalized benders decomposition based algorithm for an inventory location problem with stochastic inventory capacity constraints. Eur J Oper Res 267(3):806–817

    MathSciNet  Google Scholar 

  • Tapia-Ubeda FJ, Miranda PA, Roda I, Macchi M, Orlando D (2018b) An inventory-location modeling structure for spare parts supply chain network design problems in industrial end-user sites. IFAC-PapersOnLine 51(11):968–973

    Google Scholar 

  • Tapia-Ubeda FJ, Miranda PA, Gutiérrez-Jarpa G, Durán O (2019) Supplier selection for spare parts supply chain networks. IFAC-PapersOnLine 52(13):2237–2242

    Google Scholar 

  • Tapia-Ubeda FJ, Miranda PA, Roda I, Macchi M, Durán O (2020) Modelling and solving spare parts supply chain network design problems. Int J Prod Res 58(17):5299–5319

    Google Scholar 

  • Tcha DW, Lee BI (1984) A branch-and-bound algorithm for the multi-level uncapacitated facility location problem. Eur J Oper Res 18(1):35–43

    Google Scholar 

  • Thanh PN, Bostel N, Péton O (2008) A dynamic model for facility location in the design of complex supply chains. Int J Prod Econ 113(2):678–693

    Google Scholar 

  • Tracey M, Lim JS, Vonderembse MA (2005) The impact of supply-chain management capabilities on business performance. Supply Chain Manag 10(3):179–191

    Google Scholar 

  • Truong TH, Azadivar F (2005) Optimal design methodologies for configuration of supply chains. Int J Prod Res 43(11):2217–2236

    Google Scholar 

  • Vanteddu G, Chinnam RB, Gushikin O (2011) Supply chain focus dependent supplier selection problem. Int J Prod Econ 129(1):204–216

    Google Scholar 

  • Wang H, Alidaee B (2019) The multi-floor cross-dock door assignment problem: rising challenges for the new trend in logistics industry. Transp Res Part E Logist Transp Rev 132:30–47

    CAS  Google Scholar 

  • White JA, Case KE (1974) On covering problems and the central facilities location problem. Geogr Anal 6(3):281–294

    Google Scholar 

  • Wilson RH (1934) A scientific routine for stock control. Harv Bus Rev 13(1):116–128

    Google Scholar 

  • Yao Z, Lee LH, Jaruphongsa W, Tan V, Hui CF (2010) Multi-source facility location–allocation and inventory problem. Eur J Oper Res 207(2):750–762

    MathSciNet  Google Scholar 

  • Yu H, Solvang WD, Li S (2014) An integrated optimization model for single-product supply chain network design considering supplier selection. In: 2014 5th IEEE conference on cognitive infocommunications (CogInfoCom). IEEE, pp 443–448

  • Zhang X, Li Z, Wang Y (2020) A review of the criteria and methods of reverse logistics supplier selection. Processes 8(6):705

    Google Scholar 

Download references

Acknowledgements

This research work was performed by ANID FONDECYT grant number 1123046. In addition, this research was also supported by “Proyecto Iniciación a la Investigación 2022” of Universidad Católica del Norte grant number VRIDT No. 055/2022. Furthermore, this research work was supported partially by “Postdoctorado DI 2019” of Pontificia Universidad Católica de Valparaíso, Grant Agreement Number 37.0/2019.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Tapia-Ubeda.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

This appendix provides a simple analysis to demonstrate the convenience of selecting a single supplier instead of two suppliers for serving a warehouse with known demand mean and variance. For this demonstration, we assume that, in cases of employing two suppliers with different lead times, the perceived lead time at the warehouse would be the average value, considering the proportion of demand served by each supplier as weighing parameter. Any other assumption may potently increase the perceived lead time at the warehouse, for example integrating the lead time variance, or considering the maximum lead time of the two values, yielding more advantages of selecting a single supplier.

Following the notation in Sect. 3, omitting the index i of the warehouse, and considering that θ is the proportion of demand served by supplier 2 respect to the demand served by supplier 1, the total costs perceived by the warehouse can be written as follows (all remaining costs does not depend on supplier selection):

$$\begin{aligned} G\left( \theta \right) & = HC \cdot Z_{1 - \alpha } \sqrt {\left( {\left( {1 - \theta } \right) \cdot LT_{1} + \theta \cdot LT_{2} } \right)} \cdot \sqrt V \\ & + CIn_{1} \cdot \left( {1 - \theta } \right) \cdot D + CIn_{2} \cdot \theta \cdot D \end{aligned}$$
(38)

This analysis aims at demonstrating that selecting one supplier (θ = 0 or θ = 1) always yield a lower cost compared to operating the two of them (0 < θ < 1). Without loss of generality, we assume that total cost of employing suppler 1 \((\theta = 0)\) is lower than selecting supplier 2 \((\theta = 1)\), i.e., the following expression holds.

$$HC \cdot Z_{1 - \alpha } \sqrt {LT_{1} } \cdot \sqrt V + CIn_{1} \cdot D < HC \cdot Z_{1 - \alpha } \sqrt {LT_{2} } \cdot \sqrt V + CIn_{2} \cdot D$$
(39)

The second derivative of G(θ) the expression is:

$$\frac{{\partial G^{2} \left( \theta \right)}}{{\partial \theta^{2} }} = - \frac{1}{4}HC \cdot Z_{1 - \alpha } \cdot \frac{{\left( {LT_{2} - LT_{1} } \right)^{2} }}{{\left( {\left( {1 - \theta } \right) \cdot LT_{1} + \theta \cdot LT_{2} } \right)^{{{\raise0.7ex\hbox{$3$} \!\mathord{\left/ {\vphantom {3 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} }} \cdot \sqrt V$$
(40)

Which is allays negative when LT1 ≠ LT2 and the costs function is strictly concave. Accordingly, any value of 0 < θ < 1 will always provide a more expensive cost than θ = 0 and selecting suppler 1 is always better than employing the two suppliers.

Notice that:

  • When the lead times are the same, the selection would be driven by the transportation costs, and again one supplier will be better than two suppliers (except when the transportation costs are the same, where choosing one suppler is also optimum).

  • If fixed cost of selecting suppliers are added in to the analysis, the costs function when 0 < θ < 1 is a vertical shift up, which does not affect the obtained result.

Appendix B

In this appendix, a numerical example is presented considering 2 suppliers, 5 potential warehouses, and 5 customers, for which the proposed formulation is solved by using the proposed GBD-based algorithm. In this case, after integrating the five initial cuts (P = 1, 2, 3, 4, 5), the algorithm employed 8 iterations for obtaining the final optimal solution. The MP solutions for all iterations are presented in Fig. 

Fig. 30
figure 30

Solutions obtained with the MP at each iteration

30 (except for the iteration 4). In addition, Table 9 and Fig. 31 show information about solutions obtained at each iteration.

Table 9 Objective function values for each iteration
Fig. 31
figure 31

Objective function evolution

The next is the set of cuts integrated into the MP, including the first five cuts obtained with the artificial or modified MP (i.e., P = 1, 2, 3, 4, 5), and the seven cuts obtained after solving the respective SP at each iteration.

figure a

Appendix C

 

Base Instance 1

Base Instance 2

#Customers (nC)

#Customers (nC)

5

10

15

20

5

10

15

20

#Suppliers (nS) = 1

#Warehouses (nW) = 5

OF

1,653,895.92

2,860,993.11

4,572,433.18

6,162,400.77

1,341,407.58

2,548,128.58

3,857,099.02

5,184,189.95

Time

3.67

7.56

6.73

7.31

0.42

0.95

1.58

2.34

IT

21

19

20

20

18

21

20

21

NSS

1

1

1

1

1

1

1

1

NLW

1

1

2

2

2

3

3

4

#Warehouses (nW) = 10

OF

1,653,895.92

2,860,993.11

4,572,433.18

6,162,400.77

1,334,676.43

2,523,856.89

3,833,785.20

5,173,655.55

Time

154.73

640.28

2,444.92

4,336.02

15.47

364.33

951.34

2,163.33

IT

137

237

438

476

90

194

264

382

NSS

1

1

1

1

1

1

1

1

NLW

2

1

2

2

2

3

3

5

#Suppliers (nS) = 2

#Warehouses (nW) = 5

OF

902,217.35

1,771,093.71

3,003,583.48

3,928,232.99

1,341,407.58

2,519,762.03

3,685,399.79

4,885,462.65

Time

0.09

0.06

1.55

0.59

0.84

1.02

1.54

1.39

IT

9

9

13

13

22

22

22

19

NSS

2

2

2

2

1

2

2

2

NLW

2

2

2

2

2

4

4

5

#Warehouses (nW) = 10

OF

711,512.07

1,331,319.76

2,339,769.96

2,995,884.98

1,264,357.39

2,237,598.46

3,246,475.83

4,154,951.58

Time

2.16

4.38

138.55

323.36

37.36

347.52

837.80

704.27

IT

23

44

119

144

110

160

246

245

NSS

2

2

2

2

2

2

2

2

NLW

2

2

2

2

3

5

4

6

#Suppliers (nS) = 3

#Warehouses (nW) = 5

OF

902,217.35

1,771,093.71

3,003,583.48

3,928,232.99

1,127,656.11

2,116,536.19

3,269,642.37

4,373,393.58

Time

0.02

0.08

0.72

0.34

0.30

0.28

0.61

1.73

IT

9

9

13

13

16

15

18

17

NSS

2

2

2

2

1

3

3

3

NLW

2

2

2

2

2

4

4

4

#Warehouses (nW) = 10

OF

711,512.07

1,331,319.76

2,339,769.96

2,995,884.98

1,064,691.21

1,884,622.88

2,888,657.25

3,687,404.66

Time

1.72

4.61

161.25

312.48

11.09

87.61

598.34

393.86

IT

24

43

116

146

70

122

203

160

NSS

2

2

2

2

2

3

3

3

NLW

2

2

2

2

3

5

4

5

#Suppliers (nS) = 4

#Warehouses (nW) = 5

OF

902,217.35

1,771,093.71

3,003,583.48

3,928,232.99

1,114,799.06

2,080,184.58

3,233,290.76

4,329,027.10

Time

0.05

0.11

0.56

0.55

0.28

0.16

0.89

1.22

IT

9

10

13

13

14

15

18

17

NSS

2

2

2

2

2

4

4

4

NLW

2

2

2

2

2

4

4

5

#Warehouses (nW) = 10

OF

711,512.07

1,331,319.76

2,339,769.96

2,995,884.98

1,051,834.15

1,849,241.84

2,844,935.85

3,635,912.71

Time

2.64

6.67

171.83

394.81

8.92

60.72

467.98

319.95

IT

27

42

130

162

63

110

175

144

NSS

2

2

2

2

3

4

4

4

NLW

2

2

2

2

3

5

4

5

#Suppliers (nS) = 5

#Warehouses (nW) = 5

OF

796,223.69

1,588,750.60

2,715,683.21

3,534,363.11

1,114,799.06

2,064,311.57

3,182,573.28

4,260,916.25

Time

0.16

0.44

0.41

0.89

0.19

0.31

0.64

0.77

IT

8

9

11

13

14

15

16

15

NSS

2

2

2

2

2

4

4

4

NLW

2

2

2

2

2

4

4

5

#Warehouses (nW) = 10

OF

686,625.76

1,295,891.76

2,246,120.38

2,883,470.01

1,051,834.15

1,847,216.18

2,837,172.63

3,635,912.71

Time

2.38

4.25

105.48

239.78

12.80

64.20

498.11

435.16

IT

27

41

108

141

70

113

178

157

NSS

3

3

3

3

3

4

4

4

NLW

3

3

4

4

3

5

5

5

 

Base Instance 3

Base Instance 4

#Customers (nC)

#Customers (nC)

5

10

15

20

5

10

15

20

#Suppliers (nS) = 1

#Warehouses (nW) = 5

OF

995,112.73

2,515,167.29

4,200,934.27

5,258,949.57

1,238,599.35

2,832,975.75

4,325,107.64

5,424,879.07

Time

0.16

0.44

0.75

2.03

0.30

0.14

1.20

1.75

IT

12

16

19

19

13

13

17

17

NSS

1

1

1

1

1

1

1

1

NLW

1

2

2

2

2

2

2

2

#Warehouses (nW) = 10

OF

947,693.14

2,429,290.47

4,037,254.73

5,065,233.24

1,057,054.89

2,046,949.19

3,262,833.68

4,198,252.61

Time

3.92

367.42

1,088.72

1,667.41

10.47

38.22

254.28

352.20

IT

63

208

296

320

73

84

137

160

NSS

1

1

1

1

1

1

1

1

NLW

2

2

2

3

2

2

2

2

#Suppliers (nS) = 2

#Warehouses (nW) = 5

OF

911,715.73

2,339,536.84

3,759,968.83

4,775,702.42

1,104,478.66

2,715,635.28

4,066,848.29

4,977,718.31

Time

0.11

0.95

0.59

1.14

0.72

0.98

3.28

1.34

IT

13

19

17

18

22

22

24

22

NSS

2

2

2

2

2

2

2

2

NLW

2

3

3

3

3

4

4

4

#Warehouses (nW) = 10

OF

872,213.99

2,250,428.74

3,618,518.00

4,606,189.29

966,004.74

1,982,957.17

3,146,368.06

3,959,410.78

Time

4.48

415.91

567.47

782.55

15.53

46.00

305.33

254.34

IT

59

189

184

204

88

97

173

163

NSS

2

2

2

2

2

2

2

2

NLW

3

3

3

3

3

3

3

3

#Suppliers (nS) = 3

#Warehouses (nW) = 5

OF

712,827.76

1,802,342.72

2,797,581.10

3,669,264.02

1,104,478.66

2,715,635.28

4,066,848.29

4,977,718.31

Time

0.09

0.14

0.30

0.44

0.77

1.05

2.41

1.80

IT

9

12

12

12

22

21

22

21

NSS

2

2

2

3

2

2

2

2

NLW

2

2

2

3

3

4

4

4

#Warehouses (nW) = 10

OF

646,117.64

1,611,471.85

2,551,847.98

3,369,148.32

923,324.60

1,939,914.68

2,914,593.43

3,715,791.39

Time

2.97

27.83

43.02

139.97

14.38

36.25

35.56

44.16

IT

32

70

82

103

76

85

77

71

NSS

2

2

2

2

3

2

3

3

NLW

4

4

4

4

3

3

3

3

#Suppliers (nS) = 4

#Warehouses (nW) = 5

OF

712,827.76

1,802,342.72

2,797,581.10

3,669,264.02

1,028,530.32

2,464,786.74

3,704,009.89

4,617,788.52

Time

0.05

0.19

0.33

0.16

0.48

1.31

1.50

2.38

IT

9

12

12

12

19

17

19

20

NSS

2

2

2

3

2

3

3

3

NLW

2

2

2

3

3

4

4

4

#Warehouses (nW) = 10

OF

646,417.64

1,611,471.85

2,551,847.98

3,369,148.32

691,545.15

1,318,757.45

2,018,605.18

2,610,180.59

Time

2.75

26.53

44.48

143.33

2.81

4.58

8.33

15.55

IT

32

70

82

103

40

51

47

44

NSS

2

2

2

2

3

3

3

3

NLW

4

4

4

4

3

3

3

3

#Suppliers (nS) = 5

#Warehouses (nW) = 5

OF

712,827.76

1,802,342.72

2,797,581.10

3,669,264.02

997,555.19

2,359,739.83

3,574,912.38

4,482,864.95

Time

0.05

0.33

0.34

0.27

0.28

0.70

1.91

1.69

IT

9

12

12

12

17

18

20

18

NSS

2

2

2

3

3

3

3

3

NLW

2

2

2

3

3

3

3

4

#Warehouses (nW) = 10

OF

641,973.51

1,610,049.60

2,538,434.70

3,357,335.96

691,545.15

1,318,757.45

2,018,605.18

2,610,180.59

Time

2.91

29.30

52.64

130.23

2.72

5.88

7.22

16.08

IT

32

72

77

104

43

49

40

43

NSS

3

3

3

3

3

3

3

3

NLW

4

5

5

5

3

3

3

3

 

Base Instance 5

#Customers (nC)

5

10

15

20

#Suppliers (nS) = 1

#Warehouses (nW) = 5

OF

2,178,244.28

4,328,128.83

6,116,851.14

8,124,073.96

Time

0.53

1.77

7.83

6.84

IT

15

18

19

19

NSS

1

1

1

1

NLW

1

2

2

2

#Warehouses (nW) = 10

OF

1,663,819.94

3,331,834.97

4,812,300.25

6,098,933.05

Time

29.98

675.22

1,665.34

1,786.20

IT

94

260

348

311

NSS

1

1

1

1

NLW

2

3

4

4

#Suppliers (nS) = 2

#Warehouses (nW) = 5

OF

1,935,285.14

3,788,038.48

5,311,398.25

7,204,257.02

Time

0.66

3.77

7.09

4.11

IT

19

23

23

22

NSS

1

1

1

1

NLW

2

2

2

2

#Warehouses (nW) = 10

OF

1,293,913.57

2,617,644.85

3,838,034.86

4,996,407.90

Time

9.78

159.97

502.75

457.14

IT

52

95

172

146

NSS

2

2

2

2

NLW

2

3

4

4

#Suppliers (nS) = 3

#Warehouses (nW) = 5

OF

1,140,038.99

2,283,616.46

3,058,355.76

4,034,370.07

Time

0.20

0.50

0.48

0.58

IT

10

15

15

15

NSS

1

1

1

1

NLW

1

2

2

2

#Warehouses (nW) = 10

OF

1,076,136.77

2,137,499.81

2,860,586.43

3,696,629.23

Time

3.38

65.48

194.55

60.67

IT

32

98

115

102

NSS

2

3

3

3

NLW

2

3

3

3

#Suppliers (nS) = 4

#Warehouses (nW) = 5

OF

1,140,038.99

2,255,318.32

3,015,394.18

3,991,818.42

Time

0.08

0.41

0.92

1.66

IT

10

15

17

17

NSS

1

2

2

2

NLW

1

2

2

2

#Warehouses (nW) = 10

OF

964,500.00

1,925,217.76

2,593,771.64

3,430,290.72

Time

1.41

9.94

24.81

9.19

IT

20

53

57

51

NSS

2

3

3

3

NLW

2

3

3

3

#Suppliers (nS) = 5

#Warehouses (nW) = 5

OF

1,140,038.99

2,255,318.32

3,015,394.18

3,991,818.42

Time

0.06

0.56

1.69

1.41

IT

10

15

17

17

NSS

1

2

2

2

NLW

1

2

2

2

#Warehouses (nW) = 10

OF

964,500.00

1,925,217.76

2,593,771.64

3,430,290.72

Time

1.78

10.31

26.23

9.16

IT

20

53

57

51

NSS

2

3

3

3

NLW

2

3

3

3

Appendix D

 

AVERAGE

#Customers (nC)

5

10

15

20

#Suppliers (nS) = 1

#Warehouses (nW) = 5

OF

1.481.451,97

3.017.078,71

4.614.485,05

6.030.898,67

Time

1,02

2,17

3,62

4,06

IT

15,80

17,40

19,00

19,20

NSS

1,00

1,00

1,00

1,00

NLW

1,40

2,00

2,20

2,40

#Warehouses (nW) = 10

OF

1.331.428,07

2.638.584,93

4.103.721,41

5.339.695,04

Time

42,92

417,09

1.280,92

2.061,03

IT

91,40

196,60

296,60

329,80

NSS

1,00

1,00

1,00

1,00

NLW

2,00

2,20

2,60

3,20

#Suppliers (nS) = 2

#Warehouses (nW) = 5

OF

1.239.020,89

2.626.813,27

3.965.439,73

5.154.274,68

Time

0,48

1,36

2,81

1,72

IT

17,00

19,00

19,80

18,80

NSS

1,60

1,80

1,80

1,80

NLW

2,20

3,00

3,00

3,20

#Warehouses (nW) = 10

OF

1.021.600,35

2.083.989,80

3.237.833,34

4.142.568,91

Time

13,86

194,75

470,38

504,33

IT

66,40

117,00

178,80

180,40

NSS

2,00

2,00

2,00

2,00

NLW

2,60

3,20

3,20

3,60

#Suppliers (nS) = 3

#Warehouses (nW) = 5

OF

997.443,77

2.137.844,87

3.239.202,20

4.196.595,79

Time

0,28

0,41

0,90

0,98

IT

13,20

14,40

13,80

15,60

NSS

1,60

2,00

2,00

2,20

NLW

2,00

2,80

3,00

3,00

#Warehouses (nW) = 10

OF

884.356,46

1.780.965,80

2.711.091,01

3.492.971,72

Time

6,71

44,36

206,54

190,23

IT

46,80

83,60

118,60

116,40

NSS

2,20

2,40

2,60

2,60

NLW

2,80

3,40

3,20

3,40

#Suppliers (nS) = 4

#Warehouses (nW) = 5

OF

979.682,70

2.074.745,21

3.150.771,88

4.107.226,21

Time

0,19

0,43

0,84

1,19

IT

12,20

13,80

15,80

15,80

NSS

1,80

2,60

2,60

2,80

NLW

2,00

2,80

2,80

3,20

#Warehouses (nW) = 10

OF

813.161,80

1.607.201,73

2.469.786,12

3.208.283,47

Time

3,71

21,69

143,49

176,57

IT

36,40

65,20

98,20

100,80

NSS

2,40

2,80

2,80

2,80

NLW

2,80

3,40

3,20

3,40

#Suppliers (nS) = 5

#Warehouses (nW) = 5

OF

952.288,94

2.014.092,61

3.057.228,83

3.987.845,35

Time

0,15

0,47

1,00

1,00

IT

11,60

13,80

15,20

15,00

NSS

2,00

2,60

2,60

2,80

NLW

2,00

2,60

2,60

3,20

#Warehouses (nW) = 10

OF

807.295,71

1.599.426,55

2.446.820,91

3.183.438,00

Time

4,52

22,79

137,94

166,08

IT

38,40

65,60

92,00

99,20

NSS

2,80

3,20

3,20

3,20

NLW

3,00

3,80

4,00

4,00

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tapia-Ubeda, F.J., Miranda-Gonzalez, P.A. & Gutiérrez-Jarpa, G. Integrating supplier selection decisions into an inventory location problem for designing the supply chain network. J Comb Optim 47, 2 (2024). https://doi.org/10.1007/s10878-023-01100-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10878-023-01100-y

Keywords

Navigation