Skip to main content
Log in

Robust Control Based on Fast Terminal Sliding Mode Control with Adaptive Interval Type-2 Fuzzy PID

  • Published:
International Journal of Fuzzy Systems Aims and scope Submit manuscript

Abstract

This article introduces a new fault-tolerant control method based on type-2 fuzzy systems with PID fast terminal sliding mode control. By integrating the advantages of proportional-integral-derivative (PID) control with fast terminal sliding mode (FTSM) control, a novel proportional-integral-derivative fast terminal sliding mode (PID-FTSM) is developed to accelerate convergence and decrease steady-state error. To provide outstanding fault tolerant control performance and approximation of system uncertainties, a type-2 fuzzy logical switching approach law eliminates the chattering phenomenon and reduce the need of prior knowledge without affecting the system’s robustness. The overall stability of the system is verified using the Lyapunov function. Finally, several experiments demonstrate that the suggested technique outperforms alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Song, Z., Sun, K.: Adaptive backstepping sliding mode control with fuzzy monitoring strategy for a kind of mechanical system. ISA Trans. 53(1), 125–133 (2014)

    Article  Google Scholar 

  2. Basri, M.A., Husain, A.R., Danapalasingam, K.A.: Enhanced backstepping controller design with application to autonomous quadrotor unmanned aerial vehicle. J. Intell. Robot. Syst. 79(2), 295–321 (2015)

    Article  Google Scholar 

  3. Cheng, C.F., Lin, J.C., Lin, Y.C.: Fault-tolerance mechanisms for software-defined internet of vehicles. IEEE Trans. Intell. Transp. Syst. 22(6), 3859–3868 (2021)

    Article  Google Scholar 

  4. Ahmed, U., et al.: Feedback learning in software-defined mobile network for resource aware load balancing under fault tolerance conditions. IEEE Instrum. Meas. Mag. 25(7), 32–37 (2022)

    Article  MathSciNet  Google Scholar 

  5. Vaseghi, B., Pourmina, M.A., Mobayen, S.: Secure communication in wireless sensor networks based on chaos synchronization using adaptive sliding mode control. Nonlinear Dynam. 89(3), 1689–1704 (2017)

    Article  MathSciNet  Google Scholar 

  6. Zakeri, E., Farahat, S., Moezi, S.A., Zare, A.: Robust sliding mode control of amini unmanned underwater vehicle equipped with a new arrangement of water jet propulsions: simulation and experimental study. Appl. Ocean Res. 59(1), 521–542 (2016)

    Article  Google Scholar 

  7. Li, X., Wang, Y.: Sliding-mode control combined with improved adaptive feedforward for wafer scanner. Mech. Syst. Signal Process. 103, 105–116 (2018)

    Article  Google Scholar 

  8. Li, J., Niu, Y.: Sliding mode control subject to rice channel fading. IET Control Theory Appl. 13(16), 2529–2537 (2019)

    Article  MathSciNet  Google Scholar 

  9. Zhao, H., Niu, Y., Zhao, J.: Event-triggered sliding mode control of uncertain switched systems under denial-of-service attacks. J. Frankl. Inst. 356(18), 11414–11433 (2019)

    Article  MathSciNet  Google Scholar 

  10. Cao, Z., Niu, Y., Song, J.: Finite-time sliding mode control of Markovian jump cyber-physical systems against randomly occurring injection attacks. IEEE Trans. Autom. Control 65(3), 1264–1271 (2019)

    Article  MathSciNet  Google Scholar 

  11. Cao, Z., Niu, Y., Zou, Y.: Adaptive neural sliding mode control or singular semi-Markovian jump systems against actuator attacks. IEEE Trans. Syst. Man Cybern. Syst. 51(3), 1523–1533 (2021)

    Google Scholar 

  12. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Berlin, Heidelberg (1992)

    Book  Google Scholar 

  13. Chen, K.-Y.: Supplemental state observer-based sliding mode control for a dynamic system. IET Control Theory Appl. 15, 1545–1558 (2021)

    Article  Google Scholar 

  14. Elhaki, O., Shojaei, K., Mohammadzadeh, A.: Robust state and output feedback prescribed performance interval type-3 fuzzy reinforcement learning controller for an unmanned aerial vehicle with actuator saturation. IET Control Theory Appl. 00, 1–23 (2022)

    Google Scholar 

  15. Ma, Y., Wang, J., Li, Q., Shi, L., Qin, Y., Liu, H., Tian, H.: Adaptive sliding mode control strategy based on disturbance observer and neural network for lower limb rehabilitative robot. IET Control Theory Appl. 00, 1–19 (2022)

    Article  Google Scholar 

  16. Van, M., Mavrovouniotis, M., Ge, S.S.: An adaptive backstepping nonsingular fast terminal sliding mode control for robust fault tolerant control of robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 49(7), 1448–1458 (2019)

    Article  Google Scholar 

  17. Fei, J., Feng, Z.: Fractional-order finite-time super-twisting sliding mode control of micro gyroscope based on double-loop fuzzy neural network. IEEE Trans Syst. Man Cybern. Syst. 51(12), 7692–7706 (2020)

    Article  MathSciNet  Google Scholar 

  18. Fei, J., Chen, Y.: Dynamic terminal sliding-mode control for single-phase active power filter using new feedback recurrent neural network. IEEE Trans. Power Electron. 35(9), 9904–9922 (2020)

    Article  Google Scholar 

  19. Fei, J., Chu, Y.: Double hidden layer recurrent neural adaptive global sliding mode control of active power filter. IEEE Trans. Power Electron. 35(3), 3069–3084 (2020)

    Article  Google Scholar 

  20. Yu, S., Yu, X., Shirinzadeh, B.: Continuous finite-time control for robotic manipulators with terminal sliding mode. Automatica 41(11), 1957–1964 (2005)

    Article  MathSciNet  Google Scholar 

  21. Van, M.: An enhanced robust fault tolerant control based on an adaptive fuzzy pid-nonsingular fast terminal sliding mode control for uncertain nonlinear systems. IEEE/ASME Trans. Mechatron. 23(3), 1362–1371 (2018)

    Article  Google Scholar 

  22. Basin, M.V., Yu, P., Shtessel, Y.B.: Hypersonic missile adaptive sliding mode control using finite- and fixed-time observers. IEEE Trans. Ind. Electron. 65(1), 930–941 (2018)

    Article  Google Scholar 

  23. Hoffstadt, T., Maas, J.: Adaptive sliding-mode position control for dielectric elastomer actuators. IEEE/ASME Trans. Mechatron. 22(5), 2241–2251 (2017)

    Article  Google Scholar 

  24. Lu, X., Zhang, X., Zhang, G., Fan, J., Jia, S.: Neural network adaptive sliding mode control for omnidirectional vehicle with uncertainties. ISA Trans. 86, 201–214 (2019)

    Article  Google Scholar 

  25. Dass, A., Srivastava, S.: Identification and control of dynamical systems using different architectures of recurrent fuzzy system. ISA Trans. 85, 107–118 (2019)

    Article  Google Scholar 

  26. Moradi, H., Vossoughi, G.: Robust control of the variable speed wind turbines in the presence of uncertainties: a comparison between H∞ and PID controllers. Energy 90, 1508–1521 (2015)

    Article  Google Scholar 

  27. Lam, H.K., Seneviratne, L.D.: Stability analysis of interval type-2 fuzzy-model-based control systems. IEEE Trans. Syst. Man Cybern B 38(3), 617–628 (2008)

    Article  Google Scholar 

  28. Li, H., Sun, X., Wu, L., Lam, H.: State and output feedback control of interval type-2 fuzzy systems with mismatched membership functions. IEEE Trans. Fuzzy Syst. 23(6), 1943–1957 (2015)

    Article  Google Scholar 

  29. Li, H., Wu, C., Jing, X., Wu, L.: Fuzzy tracking control for nonlinear networked systems. IEEE Trans. Cybern. 47(8), 2020–2031 (2017)

    Article  Google Scholar 

  30. Li, H., Yin, S., Pan, Y., Lam, H.K.: Model reduction for interval type-2 Takagi-Sugeno fuzzy systems. Automatica 61, 308–314 (2015)

    Article  MathSciNet  Google Scholar 

  31. Sheng, L., Ma, X.: Stability analysis and controller design of interval type-2 fuzzy systems with time delay. Int. J. Syst. Sci. 45(5), 977–993 (2014)

    Article  MathSciNet  Google Scholar 

  32. Pham, D., Huynh, T., Lin, C.: Fault-tolerant control for robotic systems using a wavelet type-2 fuzzy brain emotional learning controller and a topsis-based self-organizing algorithm. Int. J. Fuzzy Syst. 25, 1727–1741 (2023)

    Article  Google Scholar 

  33. Xu, T.T., Qin, J.D.: A new representation method for type-2 fuzzy sets and its application to multiple criteria decision making. Int. J. Fuzzy Syst. 25, 1171–1190 (2023)

    Article  Google Scholar 

  34. Tsai, S.H., Wu, C.Y., Chen, Y.H.: A novel Type-2 fuzzy ıdentification method based on the ımproved membership function. Int. J. Fuzzy Syst. 25, 1818–1833 (2023)

    Article  Google Scholar 

  35. Dong, J., Duan, X.: A robust control via a fuzzy system with PID for the ROV. Sensors 23(2), 821 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingguang Duan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Duan, X. Robust Control Based on Fast Terminal Sliding Mode Control with Adaptive Interval Type-2 Fuzzy PID. Int. J. Fuzzy Syst. 26, 849–859 (2024). https://doi.org/10.1007/s40815-023-01639-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40815-023-01639-2

Keywords

Navigation