Generic placeholder image

Current Genomics

Editor-in-Chief

ISSN (Print): 1389-2029
ISSN (Online): 1875-5488

Research Article

Exploring the Role of Non-synonymous and Deleterious Variants Identified in Colorectal Cancer: A Multi-dimensional Computational Scrutiny of Exomes

Author(s): Chandrashekar Karunakaran, Vidya Niranjan*, Anagha S. Setlur, Dhanya Pradeep and Jitendra Kumar*

Volume 25, Issue 1, 2024

Published on: 22 January, 2024

Page: [41 - 64] Pages: 24

DOI: 10.2174/0113892029285310231227105503

Price: $65

Abstract

Introduction: Colorectal cancers are the world’s third most commonly diagnosed type of cancer. Currently, there are several diagnostic and treatment options to combat it. However, a delay in detection of the disease is life-threatening. Additionally, a thorough analysis of the exomes of cancers reveals potential variation data that can be used for early disease prognosis.

Methods: By utilizing a comprehensive computational investigation, the present study aimed to reveal mutations that could potentially predispose to colorectal cancer. Ten colorectal cancer exomes were retrieved. Quality control assessments were performed using FastQC and MultiQC, gapped alignment to the human reference genome (hg19) using Bowtie2 and calling the germline variants using Haplotype caller in the GATK pipeline. The variants were filtered and annotated using SIFT and PolyPhen2 successfully categorized the mutations into synonymous, non-synonymous, start loss and stop gain mutations as well as marked them as possibly damaging, probably damaging and benign. This mutational profile helped in shortlisting frequently occurring mutations and associated genes, for which the downstream multi-dimensional expression analyses were carried out.

Results: Our work involved prioritizing the non-synonymous, deleterious SNPs since these polymorphisms bring about a functional alteration to the phenotype. The top variations associated with their genes with the highest frequency of occurrence included LGALS8, CTSB, RAD17, CPNE1, OPRM1, SEMA4D, MUC4, PDE4DIP, ELN and ADRA1A. An in-depth multi-dimensional downstream analysis of all these genes in terms of gene expression profiling and analysis and differential gene expression with regard to various cancer types revealed CTSB and CPNE1 as highly expressed and overregulated genes in colorectal cancer.

Conclusion: Our work provides insights into the various alterations that might possibly lead to colorectal cancer and suggests the possibility of utilizing the most important genes identified for wetlab experimentation.

Keywords: Colorectal cancer, exome analysis, non-synonymous, deleterious mutations, mutational profiling, multi-dimensional genomics, CTSB, CPNE1.

« Previous
Graphical Abstract
[1]
Colorectal Cancer Early Detection, Diagnosis, and Staging. 2022. Available from: https://www.cancer.org/cancer/colon-rectal-cancer/detection-diagnosis-staging.html (Accessed on: 5th, August, 2022).
[2]
Yang, Y.; Sun, M.; Wang, L.; Jiao, B. HIFs, angiogenesis, and cancer. J. Cell. Biochem., 2013, 114(5), 967-974.
[http://dx.doi.org/10.1002/jcb.24438] [PMID: 23225225]
[3]
Hofree, M.; Carter, H.; Kreisberg, J.F.; Bandyopadhyay, S.; Mischel, P.S.; Friend, S.; Ideker, T. Challenges in identifying cancer genes by analysis of exome sequencing data. Nat. Commun., 2016, 7(1), 12096-12096.
[http://dx.doi.org/10.1038/ncomms12096] [PMID: 27417679]
[4]
Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci., 1977, 74(12), 5463-5467.
[http://dx.doi.org/10.1073/pnas.74.12.5463] [PMID: 271968]
[5]
Guan, Y.F.; Li, G.R.; Wang, R.J.; Yi, Y.T.; Yang, L.; Jiang, D.; Zhang, X.P.; Peng, Y. Application of next-generation sequencing in clinical oncology to advance personalized treatment of cancer. Chin. J. Cancer, 2012, 31(10), 463-470.
[http://dx.doi.org/10.5732/cjc.012.10216] [PMID: 22980418]
[6]
Cibulskis, K.; Lawrence, M.S.; Carter, S.L.; Sivachenko, A.; Jaffe, D.; Sougnez, C.; Gabriel, S.; Meyerson, M.; Lander, E.S.; Getz, G. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples. Nat. Biotechnol., 2013, 31(3), 213-219.
[http://dx.doi.org/10.1038/nbt.2514] [PMID: 23396013]
[7]
Vacante, M.; Borzì, A.M.; Basile, F.; Biondi, A. Biomarkers in colorectal cancer: Current clinical utility and future perspectives. World J. Clin. Cases, 2018, 6(15), 869-881.
[http://dx.doi.org/10.12998/wjcc.v6.i15.869] [PMID: 30568941]
[8]
Andrews, S. Babraham bioinformatics-FastQC a quality control tool for high throughput sequence data. 2010. Available from: https://www. bioinformatics. babraham. ac
[9]
Ewels, P.; Magnusson, M.; Lundin, S.; Käller, M. MultiQC: Summarize analysis results for multiple tools and samples in a single report. Bioinformatics, 2016, 32(19), 3047-3048.
[http://dx.doi.org/10.1093/bioinformatics/btw354] [PMID: 27312411]
[10]
He, X.; Chen, S.; Li, R.; Han, X.; He, Z.; Yuan, D.; Zhang, S.; Duan, X.; Niu, B. Comprehensive fundamental somatic variant calling and quality management strategies for human cancer genomes. Brief. Bioinform., 2021, 22(3), bbaa083.
[http://dx.doi.org/10.1093/bib/bbaa083] [PMID: 32510555]
[11]
Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods, 2012, 9(4), 357-359.
[http://dx.doi.org/10.1038/nmeth.1923] [PMID: 22388286]
[12]
Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; Li, H. Twelve years of SAMtools and BCFtools. Gigascience, 2021, 10(2), giab008.
[http://dx.doi.org/10.1093/gigascience/giab008] [PMID: 33590861]
[13]
Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. The sequence alignment/map format and samtools. Bioinformatics, 2009, 25(16), 2078-2079.
[http://dx.doi.org/10.1093/bioinformatics/btp352] [PMID: 19505943]
[14]
Patel, R.K.; Jain, M. NGS QC toolkit: A toolkit for quality control of next generation sequencing data. PLoS One, 2012, 7(2), e30619-e30619.
[http://dx.doi.org/10.1371/journal.pone.0030619] [PMID: 22312429]
[15]
McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; DePristo, M.A. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res., 2010, 20(9), 1297-1303.
[http://dx.doi.org/10.1101/gr.107524.110] [PMID: 20644199]
[16]
Supernat, A.; Vidarsson, O.V.; Steen, V.M.; Stokowy, T. Comparison of three variant callers for human whole genome sequencing. Sci. Rep., 2018, 8(1), 17851.
[http://dx.doi.org/10.1038/s41598-018-36177-7] [PMID: 30552369]
[17]
Hsu, Y.C.; Hsiao, Y.T.; Kao, T.Y.; Chang, J.G.; Shieh, G.S. Detection of somatic mutations in exome sequencing of tumor-only samples. Sci. Rep., 2017, 7(1), 15959.
[http://dx.doi.org/10.1038/s41598-017-14896-7] [PMID: 29162841]
[18]
Cingolani, P.; Platts, A.; Wang, L.L.; Coon, M.; Nguyen, T.; Wang, L.; Land, S.J.; Lu, X.; Ruden, D.M. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly, 2012, 6(2), 80-92.
[http://dx.doi.org/10.4161/fly.19695] [PMID: 22728672]
[19]
Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Ruden, D.M.; Lu, X. Using drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet., 2012, 3, 35-35.
[http://dx.doi.org/10.3389/fgene.2012.00035] [PMID: 22435069]
[20]
Adzhubei, I.; Jordan, D.M.; Sunyaev, S.R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet., 2013, 76(1), 20.
[http://dx.doi.org/10.1002/0471142905.hg0720s76] [PMID: 23315928]
[21]
Hu, J.; Ng, P.C. SIFT Indel: Predictions for the functional effects of amino acid insertions/deletions in proteins. PLoS One, 2013, 8(10), e77940.
[http://dx.doi.org/10.1371/journal.pone.0077940] [PMID: 24194902]
[22]
LaFramboise, W.A.; Pai, R.K.; Petrosko, P.; Belsky, M.A.; Dhir, A.; Howard, P.G.; Becich, M.J.; Holtzman, M.P.; Ahrendt, S.A.; Pingpank, J.F.; Zeh, H.J.; Dhir, R.; Bartlett, D.L.; Choudry, H.A. Discrimination of low- and high-grade appendiceal mucinous neoplasms by targeted sequencing of cancer-related variants. Mod. Pathol., 2019, 32(8), 1197-1209.
[http://dx.doi.org/10.1038/s41379-019-0256-2] [PMID: 30962504]
[23]
Ernst, C.; Hahnen, E.; Engel, C.; Nothnagel, M.; Weber, J.; Schmutzler, R.K.; Hauke, J. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. BMC Med. Genomics, 2018, 11(1), 35.
[http://dx.doi.org/10.1186/s12920-018-0353-y] [PMID: 29580235]
[24]
Hicks, S.; Wheeler, D.A.; Plon, S.E.; Kimmel, M. Prediction of missense mutation functionality depends on both the algorithm and sequence alignment employed. Hum. Mutat., 2011, 32(6), 661-668.
[http://dx.doi.org/10.1002/humu.21490] [PMID: 21480434]
[25]
Padmavathi, P.; Setlur, A.S.; Chandrashekar, K.; Niranjan, V. A comprehensive in-silico computational analysis of twenty cancer exome datasets and identification of associated somatic variants reveals potential molecular markers for detection of varied cancer types. Inform. Med. Unlocked., 2021, 26, 100762.
[http://dx.doi.org/10.1016/j.imu.2021.100762]
[26]
Dietz, S.; Schirmer, U.; Mercé, C.; von Bubnoff, N.; Dahl, E.; Meister, M.; Muley, T.; Thomas, M.; Sültmann, H. Low input whole-exome sequencing to determine the representation of the tumor exome in circulating dna of non-small cell lung cancer patients. PLoS One, 2016, 11(8), e0161012-e0161012.
[http://dx.doi.org/10.1371/journal.pone.0161012] [PMID: 27529345]
[27]
Tang, Z.; Li, C.; Kang, B.; Gao, G.; Li, C.; Zhang, Z. GEPIA: A web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res., 2017, 45(W1), W98-W102.
[http://dx.doi.org/10.1093/nar/gkx247] [PMID: 28407145]
[28]
Dingerdissen, H.M.; Bastian, F.; Vijay-Shanker, K.; Robinson-Rechavi, M.; Bell, A.; Gogate, N.; Gupta, S.; Holmes, E.; Kahsay, R.; Keeney, J.; Kincaid, H.; King, C.H.; Liu, D.; Crichton, D.J.; Mazumder, R. OncoMX: A knowledgebase for exploring cancer biomarkers in the context of related cancer and healthy data. JCO Clin. Cancer Inform., 2020, 4(4), 210-220.
[http://dx.doi.org/10.1200/CCI.19.00117] [PMID: 32142370]
[29]
Cerami, E.; Gao, J.; Dogrusoz, U.; Gross, B.E.; Sumer, S.O.; Aksoy, B.A.; Jacobsen, A.; Byrne, C.J.; Heuer, M.L.; Larsson, E.; Antipin, Y.; Reva, B.; Goldberg, A.P.; Sander, C.; Schultz, N. The cBio cancer genomics portal: An open platform for exploring multidimensional cancer genomics data. Cancer Discov., 2012, 2(5), 401-404.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0095] [PMID: 22588877]
[30]
Gao, J.; Aksoy, B.A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S.O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal., 2013, 6(269), pl1-pl1.
[http://dx.doi.org/10.1126/scisignal.2004088] [PMID: 23550210]
[31]
Boyko, A.A.; Kukartsev, V.V.; Tynchenko, V.S.; Korpacheva, L.N.; Dzhioeva, N.N.; Rozhkova, A.V.; Aponasenko, S.V. Using linear regression with the least squares method to determine the parameters of the Solow model. J. Phys.: Conf. Ser., 2020, 1582, 012016.
[32]
Swift, M.L. GraphPad prism, data analysis, and scientific graphing. J. Chem. Inf. Comput. Sci., 1997, 37(2), 411-412.
[http://dx.doi.org/10.1021/ci960402j]
[33]
Ng, P.C.; Henikoff, S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res., 2003, 31(13), 3812-3814.
[http://dx.doi.org/10.1093/nar/gkg509] [PMID: 12824425]
[34]
Azzopardi, D.; Dallosso, A.R.; Eliason, K.; Hendrickson, B.C.; Jones, N.; Rawstorne, E.; Colley, J.; Moskvina, V.; Frye, C.; Sampson, J.R.; Wenstrup, R.; Scholl, T.; Cheadle, J.P. Multiple rare nonsynonymous variants in the adenomatous polyposis coli gene predispose to colorectal adenomas. Cancer Res., 2008, 68(2), 358-363.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5733] [PMID: 18199528]
[35]
Thurston, T.L.M.; Wandel, M.P.; von Muhlinen, N.; Foeglein, Á.; Randow, F. Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature, 2012, 482(7385), 414-418.
[http://dx.doi.org/10.1038/nature10744] [PMID: 22246324]
[36]
Staring, J.; von Castelmur, E.; Blomen, V.A.; van den Hengel, L.G.; Brockmann, M.; Baggen, J.; Thibaut, H.J.; Nieuwenhuis, J.; Janssen, H.; van Kuppeveld, F.J.M.; Perrakis, A.; Carette, J.E.; Brummelkamp, T.R. PLA2G16 represents a switch between entry and clearance of Picornaviridae. Nature, 2017, 541(7637), 412-416.
[http://dx.doi.org/10.1038/nature21032] [PMID: 28077878]
[37]
Mani, A. PDE4DIP in health and diseases. Cell. Signal., 2022, 94, 110322.
[http://dx.doi.org/10.1016/j.cellsig.2022.110322] [PMID: 35346821]
[38]
Guo, R.; Rowe, P.S.N.; Liu, S.; Simpson, L.G.; Xiao, Z.S.; Darryl, Q.L. Inhibition of MEPE cleavage by Phex. Biochem. Biophys. Res. Commun., 2002, 297(1), 38-45.
[http://dx.doi.org/10.1016/S0006-291X(02)02125-3] [PMID: 12220505]
[39]
Li, L.; Peterson, C.A.; Kanter-Smoler, G.; Wei, Y.F.; Ramagli, L.S.; Sunnerhagen, P.; Siciliano, M.J.; Legerski, R.J. hRAD17, a structural homolog of the Schizosaccharomyces pombe RAD17 cell cycle checkpoint gene, stimulates p53 accumulation. Oncogene, 1999, 18(9), 1689-1699.
[http://dx.doi.org/10.1038/sj.onc.1202469] [PMID: 10208430]
[40]
Keeley, F.W.; Bellingham, C.M.; Woodhouse, K.A. Elastin as a self–organizing biomaterial: Use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self–assembly of elastin. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2002, 357(1418), 185-189.
[http://dx.doi.org/10.1098/rstb.2001.1027] [PMID: 11911775]
[41]
Tomsig, J.L.; Sohma, H.; Creutz, C.E. Calcium-dependent regulation of tumour necrosis factor-alpha receptor signalling by copine. Biochem. J., 2004, 378(3), 1089-1094.
[http://dx.doi.org/10.1042/bj20031654] [PMID: 14674885]
[42]
Pan, Y.X.; Xu, J.; Mahurter, L.; Xu, M.; Gilbert, A.K.; Pasternak, G.W. Identification and characterization of two new human mu opioid receptor splice variants, hMOR-1O and hMOR-1X. Biochem. Biophys. Res. Commun., 2003, 301(4), 1057-1061.
[http://dx.doi.org/10.1016/S0006-291X(03)00089-5] [PMID: 12589820]
[43]
Janssen, B.J.C.; Robinson, R.A.; Pérez-Brangulí, F.; Bell, C.H.; Mitchell, K.J.; Siebold, C.; Jones, E.Y. Structural basis of semaphorin–plexin signalling. Nature, 2010, 467(7319), 1118-1122.
[http://dx.doi.org/10.1038/nature09468] [PMID: 20877282]
[44]
Moniaux, N.; Escande, F.; Batra, S.K.; Porchet, N.; Laine, A.; Aubert, J.P. Alternative splicing generates a family of putative secreted and membrane-associated MUC4 mucins. Eur. J. Biochem., 2000, 267(14), 4536-4544.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01504.x] [PMID: 10880978]
[45]
Wright, C.D.; Chen, Q.; Baye, N.L.; Huang, Y.; Healy, C.L.; Kasinathan, S.; O’Connell, T.D. Nuclear α1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ. Res., 2008, 103(9), 992-1000.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.176024] [PMID: 18802028]
[46]
Jaswanth Jenny, P.; Dhamotharan, R. Exome data analysis in the discovery of variants associated with breast cancer metastasis and their implications on protein structure. Ann. Rom. Soc. Cell Biol., 2021, 2021, 1663-1682.
[47]
Agarwal, R.; Cao, Y.; Hoffmeier, K.; Krezdorn, N.; Jost, L.; Meisel, A.R.; Jüngling, R.; Dituri, F.; Mancarella, S.; Rotter, B.; Winter, P.; Giannelli, G. Precision medicine for hepatocelluar carcinoma using molecular pattern diagnostics: results from a preclinical pilot study. Cell Death Dis., 2017, 8(6), e2867-e2867.
[http://dx.doi.org/10.1038/cddis.2017.229] [PMID: 28594404]
[48]
Li, H.; Durbin, R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics, 2010, 26(5), 589-595.
[http://dx.doi.org/10.1093/bioinformatics/btp698] [PMID: 20080505]
[49]
Xu, X.; Zhou, Y.; Feng, X.; Li, X.; Asad, M.; Li, D.; Liao, B.; Li, J.; Cui, Q.; Wang, E. Germline genomic patterns are associated with cancer risk, oncogenic pathways, and clinical outcomes. Sci. Adv., 2020, 6(48), eaba4905.
[http://dx.doi.org/10.1126/sciadv.aba4905] [PMID: 33246949]
[50]
Toma, C.; Díaz-Gay, M.; Franch-Expósito, S.; Arnau-Collell, C.; Overs, B.; Muñoz, J.; Bonjoch, L.; Soares de Lima, Y.; Ocaña, T.; Cuatrecasas, M.; Castells, A.; Bujanda, L.; Balaguer, F.; Cubiella, J.; Caldés, T.; Fullerton, J.M.; Castellví-Bel, S. Using linkage studies combined with whole‐exome sequencing to identify novel candidate genes for familial colorectal cancer. Int. J. Cancer, 2020, 146(6), 1568-1577.
[http://dx.doi.org/10.1002/ijc.32683] [PMID: 31525256]
[51]
Chatrath, A.; Ratan, A.; Dutta, A. Germline variants that affect tumor progression. Trends Genet., 2021, 37(5), 433-443.
[http://dx.doi.org/10.1016/j.tig.2020.10.005] [PMID: 33203571]
[52]
Baert-Desurmont, S.; Coutant, S.; Charbonnier, F.; Macquere, P.; Lecoquierre, F.; Schwartz, M.; Blanluet, M.; Vezain, M.; Lanos, R.; Quenez, O.; Bou, J.; Bouvignies, E.; Fourneaux, S.; Manase, S.; Vasseur, S.; Mauillon, J.; Gerard, M.; Marlin, R.; Bougeard, G.; Tinat, J.; Frebourg, T.; Tournier, I. Optimization of the diagnosis of inherited colorectal cancer using NGS and capture of exonic and intronic sequences of panel genes. Eur. J. Hum. Genet., 2018, 26(11), 1597-1602.
[http://dx.doi.org/10.1038/s41431-018-0207-2] [PMID: 29967336]
[53]
Pshennikova, V.G.; Barashkov, N.A.; Romanov, G.P.; Teryutin, F.M.; Solov’ev, A.V.; Gotovtsev, N.N.; Nikanorova, A.A.; Nakhodkin, S.S.; Sazonov, N.N.; Morozov, I.V.; Bondar, A.A.; Dzhemileva, L.U.; Khusnutdinova, E.K.; Posukh, O.L.; Fedorova, S.A. Comparison of predictive in silico tools on missense variants in GJB2, GJB6, and GJB3 genes associated with autosomal recessive deafness 1A (DFNB1A). ScientificWorldJournal, 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/5198931] [PMID: 31015822]
[54]
Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and server for predicting damaging missense mutations. Nat. Methods, 2010, 7(4), 248-249.
[http://dx.doi.org/10.1038/nmeth0410-248] [PMID: 20354512]
[55]
Supek, F.; Miñana, B.; Valcárcel, J.; Gabaldón, T.; Lehner, B. Synonymous mutations frequently act as driver mutations in human cancers. Cell, 2014, 156(6), 1324-1335.
[http://dx.doi.org/10.1016/j.cell.2014.01.051] [PMID: 24630730]
[56]
Bin, Y.; Wang, X.; Zhao, L.; Wen, P.; Xia, J. An analysis of mutational signatures of synonymous mutations across 15 cancer types. BMC Med. Genet., 2019, 20(S2), 190.
[http://dx.doi.org/10.1186/s12881-019-0926-4] [PMID: 31815613]
[57]
Oga, T.; Yamashita, Y.; Soda, M.; Kojima, S.; Ueno, T.; Kawazu, M.; Suzuki, N.; Nagano, H.; Hazama, S.; Izumiya, M.; Koike, K.; Mano, H. Genomic profiles of colorectal carcinoma with liver metastases and newly identified fusion genes. Cancer Sci., 2019, 110(9), 2973-2981.
[http://dx.doi.org/10.1111/cas.14127] [PMID: 31293054]
[58]
Tang, J.; Tu, K.; Lu, K.; Zhang, J.; Luo, K.; Jin, H.; Wang, L.; Yang, L.; Xiao, W.; Zhang, Q.; Liu, X.; Ge, X.; Li, G.; Zhou, Z.; Xie, D. Single-cell exome sequencing reveals multiple subclones in metastatic colorectal carcinoma. Genome Med., 2021, 13(1), 148-148.
[http://dx.doi.org/10.1186/s13073-021-00962-3] [PMID: 34507604]
[59]
Kulshreshtha, S.; Chaudhary, V.; Goswami, G.K.; Mathur, N. Computational approaches for predicting mutant protein stability. J. Comput. Aided Mol. Des., 2016, 30(5), 401-412.
[http://dx.doi.org/10.1007/s10822-016-9914-3] [PMID: 27160393]
[60]
Hassan, M.S.; Shaalan, A.A.; Dessouky, M.I.; Abdelnaiem, A.E.; ElHefnawi, M. A review study: Computational techniques for expecting the impact of non-synonymous single nucleotide variants in human diseases. Gene, 2019, 680, 20-33.
[http://dx.doi.org/10.1016/j.gene.2018.09.028] [PMID: 30240882]
[61]
Prasad, V.V.T.S.; Padma, K. Non-synonymous polymorphism (Gln261Arg) of 12-lipoxygenase in colorectal and thyroid cancers. Fam. Cancer, 2012, 11(4), 615-621.
[http://dx.doi.org/10.1007/s10689-012-9559-x] [PMID: 22864639]
[62]
Kumar, A.; Rajendran, V.; Sethumadhavan, R.; Purohit, R. Evidence of colorectal cancer-associated mutation in MCAK: A computational report. Cell Biochem. Biophys., 2013, 67(3), 837-851.
[http://dx.doi.org/10.1007/s12013-013-9572-1] [PMID: 23564489]
[63]
Yu, L.; Yin, B.; Qu, K.; Li, J.; Jin, Q.; Liu, L.; Liu, C.; Zhu, Y.; Wang, Q.; Peng, X.; Zhou, J.; Cao, P.; Cao, K. Screening for susceptibility genes in hereditary non-polyposis colorectal cancer. Oncol. Lett., 2018, 15(6), 9413-9419.
[http://dx.doi.org/10.3892/ol.2018.8504] [PMID: 29844832]
[64]
Yasuda, Y.; Sakai, A.; Ito, S.; Sasai, K.; Ishizaki, A.; Okano, Y.; Kawahara, S.; Jitsumori, Y.; Yamamoto, H.; Matsubara, N.; Shimizu, K.; Katayama, H. Human NINEIN polymorphism at codon 1111 is associated with the risk of colorectal cancer. Biomed. Rep., 2020, 13(5), 1.
[http://dx.doi.org/10.3892/br.2020.1352] [PMID: 32934817]
[65]
Elola, MT; Ferragut, F; Cardenas, DVM; Nugnes, LG; Gentilini, L; Laderach, D; Troncoso, MF; Compagno, D; Wolfenstein-Tode, C; Rabinovich, GA Expression, localization and function of galectin-8, a tandem-repeat lectin, in human tumors. Histol Histopathol, 2014, 29(9), 1093-1105.
[66]
Bian, Z.; Jin, L.; Zhang, J.; Yin, Y.; Quan, C.; Hu, Y.; Feng, Y.; Liu, H.; Fei, B.; Mao, Y.; Zhou, L.; Qi, X.; Huang, S.; Hua, D.; Xing, C.; Huang, Z. LncRNA—UCA1 enhances cell proliferation and 5-fluorouracil resistance in colorectal cancer by inhibiting miR-204-5p. Sci. Rep., 2016, 6(1), 23892-23892.
[http://dx.doi.org/10.1038/srep23892] [PMID: 27046651]
[67]
Wang, Y.; Pan, S.; He, X.; Wang, Y.; Huang, H.; Chen, J.; Zhang, Y.; Zhang, Z.; Qin, X. CPNE1 Enhances colorectal cancer cell growth, glycolysis, and drug resistance through regulating the AKT-GLUT1/HK2 pathway. OncoTargets Ther., 2021, 14, 699-710.
[http://dx.doi.org/10.2147/OTT.S284211] [PMID: 33536762]
[68]
Rezaeepoor, M.; Rashidi, G.; Pourjafar, M.; Mohammadi, C.; Solgi, G.; Najafi, R. SEMA4D knockdown attenuates β-catenin-dependent tumor progression in colorectal cancer. BioMed Res. Int., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/8507373] [PMID: 34337054]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy