Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

The Role of Cytokines in Activation of Tumour-promoting Pathways and Emergence of Cancer Drug Resistance

Author(s): Ekta Shirbhate, Vaibhav Singh, Rakesh Kore, Subham Vishwakarma, Ravichandran Veerasamy, Amit K. Tiwari and Harish Rajak*

Volume 24, Issue 6, 2024

Published on: 22 January, 2024

Page: [523 - 540] Pages: 18

DOI: 10.2174/0115680266284527240118041129

Price: $65

Abstract

Scientists are constantly researching and launching potential chemotherapeutic agents as an irreplaceable weapon to fight the battle against cancer. Despite remarkable advancement over the past several decades to wipe out cancer through early diagnosis, proper prevention, and timely treatment, cancer is not ready to give up and leave the battleground. It continuously tries to find some other way to give a tough fight for its survival, either by escaping from the effect of chemotherapeutic drugs or utilising its own chemical messengers like cytokines to ensure resistance. Cytokines play a significant role in cancer cell growth and progression, and the present article highlights their substantial contribution to mechanisms of resistance toward therapeutic drugs. Multiple clinical studies have even described the importance of specific cytokines released from cancer cells as well as stromal cells in conferring resistance. Herein, we discuss the different mechanism behind drug resistance and the crosstalk between tumor development and cytokines release and their contribution to showing resistance towards chemotherapeutics. As a part of this review, different approaches to cytokines profile have been identified and employed to successfully target new evolving mechanisms of resistance and their possible treatment options.

Keywords: Apoptosis, Cancer, Cytokines, Drug resistance, Stromal cells, Tumor microenvironment.

Graphical Abstract
[1]
World cancer Research Fund International. 2023. Available from:https://wwzw.wcrf.org/ (Accessed 25 Sept 2023).
[2]
Cancer-World Health Organization. 2022. Available from:https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed 25 Sept 2023).
[3]
Kleisiaris, C.F.; Sfakianakis, C.; Papathanasiou, I.V. Health care practices in ancient Greece: The Hippocratic ideal. J. Med. Ethics Hist. Med., 2014, 7, 6.
[PMID: 25512827]
[4]
Jones, V.S.; Huang, R.Y.; Chen, L.P.; Chen, Z.S.; Fu, L.; Huang, R.P. Cytokines in cancer drug resistance: Cues to new therapeutic strategies. Biochim. Biophys. Acta Rev. Cancer, 2016, 1865(2), 255-265.
[http://dx.doi.org/10.1016/j.bbcan.2016.03.005] [PMID: 26993403]
[5]
Zahreddine, H.; Borden, K.L.B. Mechanisms and insights into drug resistance in cancer. Front. Pharmacol., 2013, 4, 28.
[http://dx.doi.org/10.3389/fphar.2013.00028] [PMID: 23504227]
[6]
Holohan, C.; Van Schaeybroeck, S.; Longley, D.B.; Johnston, P.G. Cancer drug resistance: An evolving paradigm. Nat. Rev. Cancer, 2013, 13(10), 714-726.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[7]
McMillin, D.W.; Negri, J.M.; Mitsiades, C.S. The role of tumour-stromal interactions in modifying drug response: Challenges and opportunities. Nat. Rev. Drug Discov., 2013, 12(3), 217-228.
[http://dx.doi.org/10.1038/nrd3870] [PMID: 23449307]
[8]
Saraswathy, M.; Gong, S. Different strategies to overcome multidrug resistance in cancer. Biotechnol. Adv., 2013, 31(8), 1397-1407.
[http://dx.doi.org/10.1016/j.biotechadv.2013.06.004] [PMID: 23800690]
[9]
Wang, X.; Zhang, H.; Chen, X. Drug resistance and combating drug resistance in cancer. Cancer Drug Resist., 2019, 2(2), 141-160.
[http://dx.doi.org/10.20517/cdr.2019.10] [PMID: 34322663]
[10]
Huang, D.; Duan, H.; Huang, H.; Tong, X.; Han, Y.; Ru, G.; Qu, L.; Shou, C.; Zhao, Z. Cisplatin resistance in gastric cancer cells is associated with HER2 upregulation-induced epithelial-mesenchymal transition. Sci. Rep., 2016, 6(1), 20502.
[http://dx.doi.org/10.1038/srep20502] [PMID: 26846307]
[11]
Parfenyev, S.; Singh, A.; Fedorova, O.; Daks, A.; Kulshreshtha, R.; Barlev, N.A. Interplay between p53 and non-coding RNAs in the regulation of EMT in breast cancer. Cell Death Dis., 2021, 12(1), 17.
[http://dx.doi.org/10.1038/s41419-020-03327-7] [PMID: 33414456]
[12]
Sayan, A.E.; Griffiths, T.R.; Pal, R.; Browne, G.J.; Ruddick, A.; Yagci, T.; Edwards, R.; Mayer, N.J.; Qazi, H.; Goyal, S.; Fernandez, S.; Straatman, K.; Jones, G.D.D.; Bowman, K.J.; Colquhoun, A.; Mellon, J.K.; Kriajevska, M.; Tulchinsky, E. SIP1 protein protects cells from DNA damage-induced apoptosis and has independent prognostic value in bladder cancer. Proc. Natl. Acad. Sci., 2009, 106(35), 14884-14889.
[http://dx.doi.org/10.1073/pnas.0902042106] [PMID: 19706487]
[13]
Kreso, A.; Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell, 2014, 14(3), 275-291.
[http://dx.doi.org/10.1016/j.stem.2014.02.006] [PMID: 24607403]
[14]
Greaves, M.; Maley, C.C. Clonal evolution in cancer. Nature, 2012, 481(7381), 306-313.
[http://dx.doi.org/10.1038/nature10762] [PMID: 22258609]
[15]
Frank, N.Y.; Schatton, T.; Frank, M.H. The therapeutic promise of the cancer stem cell concept. J. Clin. Invest., 2010, 120(1), 41-50.
[http://dx.doi.org/10.1172/JCI41004] [PMID: 20051635]
[16]
Stelmach, P.; Trumpp, A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica, 2023, 108(2), 353-366.
[http://dx.doi.org/10.3324/haematol.2022.280800] [PMID: 36722405]
[17]
Kang, H.; Lee, H.; Kim, D.; Kim, B.; Kang, J.; Kim, H.Y.; Youn, H.; Youn, B. Targeting glioblastoma stem cells to overcome chemoresistance: An overview of current therapeutic strategies. Biomedicines, 2022, 10(6), 1308.
[http://dx.doi.org/10.3390/biomedicines10061308] [PMID: 35740330]
[18]
Hermann, P.C.; Huber, S.L.; Herrler, T.; Aicher, A.; Ellwart, J.W.; Guba, M.; Bruns, C.J.; Heeschen, C. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell, 2007, 1(3), 313-323.
[http://dx.doi.org/10.1016/j.stem.2007.06.002] [PMID: 18371365]
[19]
Elda Valenti, G.; Tasso, B.; Traverso, N.; Domenicotti, C.; Marengo, B. Glutathione in cancer progression and chemoresistance: An update. Redox Experimen. Med., 2023, 2023(1), RT1-RT12.
[http://dx.doi.org/10.1530/REM-22-0023]
[20]
Gillet, J.P.; Calcagno, A.M.; Varma, S.; Davidson, B.; Bunkholt Elstrand, M.; Ganapathi, R.; Kamat, A.A.; Sood, A.K.; Ambudkar, S.V.; Seiden, M.V.; Rueda, B.R.; Gottesman, M.M. Multidrug resistance-linked gene signature predicts overall survival of patients with primary ovarian serous carcinoma. Clin. Cancer Res., 2012, 18(11), 3197-3206.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0056] [PMID: 22492981]
[21]
Ding, L.; Ley, T.J.; Larson, D.E.; Miller, C.A.; Koboldt, D.C.; Welch, J.S.; Ritchey, J.K.; Young, M.A.; Lamprecht, T.; McLellan, M.D.; McMichael, J.F.; Wallis, J.W.; Lu, C.; Shen, D.; Harris, C.C.; Dooling, D.J.; Fulton, R.S.; Fulton, L.L.; Chen, K.; Schmidt, H.; Kalicki-Veizer, J.; Magrini, V.J.; Cook, L.; McGrath, S.D.; Vickery, T.L.; Wendl, M.C.; Heath, S.; Watson, M.A.; Link, D.C.; Tomasson, M.H.; Shannon, W.D.; Payton, J.E.; Kulkarni, S.; Westervelt, P.; Walter, M.J.; Graubert, T.A.; Mardis, E.R.; Wilson, R.K.; DiPersio, J.F. Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature, 2012, 481(7382), 506-510.
[http://dx.doi.org/10.1038/nature10738] [PMID: 22237025]
[22]
Quintás-Cardama, A.; Kantarjian, H.M.; Cortes, J.E. Mechanisms of primary and secondary resistance to imatinib in chronic myeloid leukemia. Cancer Contr., 2009, 16(2), 122-131.
[http://dx.doi.org/10.1177/107327480901600204] [PMID: 19337198]
[23]
Jabbour, E.J.; Cortes, J.E.; Kantarjian, H.M. Resistance to tyrosine kinase inhibition therapy for chronic myelogenous leukemia: A clinical perspective and emerging treatment options. Clin. Lymphoma Myeloma Leuk., 2013, 13(5), 515-529.
[http://dx.doi.org/10.1016/j.clml.2013.03.018] [PMID: 23890944]
[24]
Tanaka, R.; Kimura, S. Abl tyrosine kinase inhibitors for overriding Bcr-Abl/T315I: From the second to third generation. Expert Rev. Anticancer Ther., 2008, 8(9), 1387-1398.
[http://dx.doi.org/10.1586/14737140.8.9.1387] [PMID: 18759691]
[25]
Cree, I.A.; Charlton, P. Molecular chess? Hallmarks of anti-cancer drug resistance. BMC Cancer, 2017, 17(1), 10.
[http://dx.doi.org/10.1186/s12885-016-2999-1] [PMID: 28056859]
[26]
Di Nicolantonio, F.; Mercer, S.J.; Knight, L.A.; Gabriel, F.G.; Whitehouse, P.A.; Sharma, S.; Fernando, A.; Glaysher, S.; Di Palma, S.; Johnson, P.; Somers, S.S.; Toh, S.; Higgins, B.; Lamont, A.; Gulliford, T.; Hurren, J.; Yiangou, C.; Cree, I.A. Cancer cell adaptation to chemotherapy. BMC Cancer, 2005, 5(1), 78.
[http://dx.doi.org/10.1186/1471-2407-5-78] [PMID: 16026610]
[27]
Arteaga, C.L.; Sliwkowski, M.X.; Osborne, C.K.; Perez, E.A.; Puglisi, F.; Gianni, L. Treatment of HER2-positive breast cancer: Current status and future perspectives. Nat. Rev. Clin. Oncol., 2012, 9(1), 16-32.
[http://dx.doi.org/10.1038/nrclinonc.2011.177] [PMID: 22124364]
[28]
Turajlic, S.; Furney, S.J.; Stamp, G.; Rana, S.; Ricken, G.; Oduko, Y.; Saturno, G.; Springer, C.; Hayes, A.; Gore, M.; Larkin, J.; Marais, R. Whole-genome sequencing reveals complex mechanisms of intrinsic resistance to BRAF inhibition. Ann. Oncol., 2014, 25(5), 959-967.
[http://dx.doi.org/10.1093/annonc/mdu049] [PMID: 24504448]
[29]
Mitiushkina, N.V.; Iyevleva, A.G.; Poltoratskiy, A.N.; Ivantsov, A.O.; Togo, A.V.; Polyakov, I.S.; Orlov, S.V.; Matsko, D.E.; Novik, V.I.; Imyanitov, E.N. Detection of EGFR mutations and EML4-ALK rearrangements in lung adenocarcinomas using archived cytological slides. Cancer Cytopathol., 2013, 121(7), 370-376.
[http://dx.doi.org/10.1002/cncy.21281] [PMID: 23408463]
[30]
Kim, S.; Kim, T.M.; Kim, D.W.; Go, H.; Keam, B.; Lee, S.H.; Ku, J.L.; Chung, D.H.; Heo, D.S. Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J. Thorac. Oncol., 2013, 8(4), 415-422.
[http://dx.doi.org/10.1097/JTO.0b013e318283dcc0] [PMID: 23344087]
[31]
Dymova, M.A.; Kuligina, E.V.; Richter, V.A. Molecular mechanism of drug resistance in Glioblastoma. Int. J. Mol. Sci., 2021, 22(12), 6385.
[http://dx.doi.org/10.3390/ijms22126385] [PMID: 34203727]
[32]
Glaysher, S.; Bolton, L.M.; Johnson, P.; Torrance, C.; Cree, I.A. Activity of EGFR, mTOR and PI3K inhibitors in an isogenic breast cell line model. BMC Res. Notes, 2014, 7(1), 397.
[http://dx.doi.org/10.1186/1756-0500-7-397] [PMID: 24964744]
[33]
Peng, F.; Liao, M.; Qin, R.; Zhu, S.; Peng, C.; Fu, L.; Chen, Y.; Han, B. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct. Target. Ther., 2022, 7(1), 286.
[http://dx.doi.org/10.1038/s41392-022-01110-y] [PMID: 35963853]
[34]
Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol. Cancer, 2015, 14(1), 48.
[http://dx.doi.org/10.1186/s12943-015-0321-5] [PMID: 25743109]
[35]
Liu, F.W.; Tewari, K.S. New targeted agents in gynecologic cancers: Synthetic lethality, homologous recombination deficiency, and PARP inhibitors. Curr. Treat. Options Oncol., 2016, 17(3), 12.
[http://dx.doi.org/10.1007/s11864-015-0378-9] [PMID: 26931795]
[36]
Pflaum, J.; Schlosser, S.; Müller, M. p53 family and cellular stress responses in cancer. Front. Oncol., 2014, 4, 285.
[http://dx.doi.org/10.3389/fonc.2014.00285] [PMID: 25374842]
[37]
Ho, E.; Piquette-Miller, M. Regulation of multidrug resistance by pro-inflammatory cytokines. Curr. Cancer Drug Targets, 2006, 6(4), 295-311.
[http://dx.doi.org/10.2174/156800906777441753] [PMID: 16848721]
[38]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984] [PMID: 16518375]
[39]
Emran, T.B.; Shahriar, A.; Mahmud, A.R.; Rahman, T.; Abir, M.H.; Siddiquee, M.F.R.; Ahmed, H.; Rahman, N.; Nainu, F.; Wahyudin, E.; Mitra, S.; Dhama, K.; Habiballah, M.M.; Haque, S.; Islam, A.; Hassan, M.M. Multidrug resistance in cancer: Understanding molecular mechanisms, immunoprevention and therapeutic approaches. Front. Oncol., 2022, 12, 891652.
[http://dx.doi.org/10.3389/fonc.2022.891652] [PMID: 35814435]
[40]
Singh, S. Cytoprotective and regulatory functions of glutathione S-transferases in cancer cell proliferation and cell death. Cancer Chemother. Pharmacol., 2015, 75(1), 1-15.
[http://dx.doi.org/10.1007/s00280-014-2566-x] [PMID: 25143300]
[41]
Di Pietro, G.; Magno, L.A.V.; Rios-Santos, F. Glutathione S-transferases: An overview in cancer research. Expert Opin. Drug Metab. Toxicol., 2010, 6(2), 153-170.
[http://dx.doi.org/10.1517/17425250903427980] [PMID: 20078251]
[42]
Hassen, W.; Kassambara, A.; Reme, T.; Sahota, S.; Seckinger, A.; Vincent, L.; Cartron, G.; Moreaux, J.; Hose, D.; Klein, B. Drug metabolism and clearance system in tumor cells of patients with multiple myeloma. Oncotarget, 2015, 6(8), 6431-6447.
[http://dx.doi.org/10.18632/oncotarget.3237] [PMID: 25669983]
[43]
Ward, R.A.; Fawell, S.; Floc’h, N.; Flemington, V.; McKerrecher, D.; Smith, P.D. Challenges and opportunities in cancer drug resistance. Chem. Rev., 2021, 121(6), 3297-3351.
[http://dx.doi.org/10.1021/acs.chemrev.0c00383] [PMID: 32692162]
[44]
Joyce, H.; McCann, A.; Clynes, M.; Larkin, A. Influence of multidrug resistance and drug transport proteins on chemotherapy drug metabolism. Expert Opin. Drug Metab. Toxicol., 2015, 11(5), 795-809.
[http://dx.doi.org/10.1517/17425255.2015.1028356] [PMID: 25836015]
[45]
Sampath, D.; Cortes, J.; Estrov, Z.; Du, M.; Shi, Z.; Andreeff, M.; Gandhi, V.; Plunkett, W. Pharmacodynamics of cytarabine alone and in combination with 7-hydroxystaurosporine (UCN-01) in AML blasts in vitro and during a clinical trial. Blood, 2006, 107(6), 2517-2524.
[http://dx.doi.org/10.1182/blood-2005-08-3351] [PMID: 16293603]
[46]
Shelton, J.; Lu, X.; Hollenbaugh, J.A.; Cho, J.H.; Amblard, F.; Schinazi, R.F. Metabolism, biochemical actions, and chemical synthesis of anticancer nucleosides, nucleotides, and base analogs. Chem. Rev., 2016, 116(23), 14379-14455.
[http://dx.doi.org/10.1021/acs.chemrev.6b00209] [PMID: 27960273]
[47]
Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A review. Curr. Drug Targets, 2018, 19(1), 38-54.
[http://dx.doi.org/10.2174/1389450118666170125144557] [PMID: 28124606]
[48]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[49]
Hanahan, D.; Coussens, L.M. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell, 2012, 21(3), 309-322.
[http://dx.doi.org/10.1016/j.ccr.2012.02.022] [PMID: 22439926]
[50]
Casey, J.R.; Grinstein, S.; Orlowski, J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol., 2010, 11(1), 50-61.
[http://dx.doi.org/10.1038/nrm2820] [PMID: 19997129]
[51]
Swietach, P.; Vaughan-Jones, R.D.; Harris, A.L.; Hulikova, A. The chemistry, physiology and pathology of pH in cancer. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2014, 369(1638), 20130099.
[http://dx.doi.org/10.1098/rstb.2013.0099] [PMID: 24493747]
[52]
Sharma, M.; Astekar, M.; Soi, S.; Manjunatha, B.; Shetty, D.; Radhakrishnan, R. pH gradient reversal: An emerging hallmark of cancers. Recent Patents Anticancer Drug Discov., 2015, 10(3), 244-258.
[http://dx.doi.org/10.2174/1574892810666150708110608] [PMID: 26152150]
[53]
Taylor, S.; Spugnini, E.P.; Assaraf, Y.G.; Azzarito, T.; Rauch, C.; Fais, S. Microenvironment acidity as a major determinant of tumor chemoresistance: Proton pump inhibitors (PPIs) as a novel therapeutic approach. Drug Resist. Updat., 2015, 23, 69-78.
[http://dx.doi.org/10.1016/j.drup.2015.08.004] [PMID: 26341193]
[54]
Webb, B.A.; Chimenti, M.; Jacobson, M.P.; Barber, D.L. Dysregulated pH: A perfect storm for cancer progression. Nat. Rev. Cancer, 2011, 11(9), 671-677.
[http://dx.doi.org/10.1038/nrc3110] [PMID: 21833026]
[55]
Wojtkowiak, J.W.; Verduzco, D.; Schramm, K.J.; Gillies, R.J. Drug resistance and cellular adaptation to tumor acidic pH microenvironment. Mol. Pharm., 2011, 8(6), 2032-2038.
[http://dx.doi.org/10.1021/mp200292c] [PMID: 21981633]
[56]
Quail, D.F.; Bowman, R.L.; Akkari, L.; Quick, M.L.; Schuhmacher, A.J.; Huse, J.T.; Holland, E.C.; Sutton, J.C.; Joyce, J.A. The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas. Science, 2016, 352(6288), aad3018.
[http://dx.doi.org/10.1126/science.aad3018] [PMID: 27199435]
[57]
De Palma, M.; Lewis, C.E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell, 2013, 23(3), 277-286.
[http://dx.doi.org/10.1016/j.ccr.2013.02.013] [PMID: 23518347]
[58]
Wang, N.; Ma, T.; Yu, B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct. Target. Ther., 2023, 8(1), 69.
[http://dx.doi.org/10.1038/s41392-023-01341-7] [PMID: 36797239]
[59]
Adhikari, S.; Bhattacharya, A.; Adhikary, S.; Singh, V.; Gadad, S.S.; Roy, S.; Das, C. The paradigm of drug resistance in cancer: An epigenetic perspective. Biosci. Rep., 2022, 42(4), BSR20211812.
[http://dx.doi.org/10.1042/BSR20211812] [PMID: 35438143]
[60]
Fernandez, A.; O’Leary, C.; O’Byrne, K.J.; Burgess, J.; Richard, D.J.; Suraweera, A. epigenetic mechanisms in DNA double strand break repair: A clinical review. Front. Mol. Biosci., 2021, 8, 685440.
[http://dx.doi.org/10.3389/fmolb.2021.685440] [PMID: 34307454]
[61]
Wang, Q.; Liang, N.; Yang, T.; Li, Y.; Li, J.; Huang, Q.; Wu, C.; Sun, L.; Zhou, X.; Cheng, X.; Zhao, L.; Wang, G.; Chen, Z.; He, X.; Liu, C. DNMT1-mediated methylation of BEX1 regulates stemness and tumorigenicity in liver cancer. J. Hepatol., 2021, 75(5), 1142-1153.
[http://dx.doi.org/10.1016/j.jhep.2021.06.025] [PMID: 34217777]
[62]
Wei, Y.; Chen, Q.; Huang, S.; Liu, Y.; Li, Y.; Xing, Y.; Shi, D.; Xu, W.; Liu, W.; Ji, Z.; Wu, B.; Chen, X.; Jiang, J. The interaction between DNMT1 and high-mannose CD133 maintains the slow-cycling state and tumorigenic potential of glioma stem cell. Adv. Sci., 2022, 9(26), 2202216.
[http://dx.doi.org/10.1002/advs.202202216] [PMID: 35798319]
[63]
Jahangiri, R.; Mosaffa, F.; Emami Razavi, A.; Teimoori-Toolabi, L.; Jamialahmadi, K. Altered DNA methyltransferases promoter methylation and mRNA expression are associated with tamoxifen response in breast tumors. J. Cell. Physiol., 2018, 233(9), 7305-7319.
[http://dx.doi.org/10.1002/jcp.26562] [PMID: 29574992]
[64]
Camero, S.; Vitali, G.; Pontecorvi, P.; Ceccarelli, S.; Anastasiadou, E.; Cicchetti, F.; Flex, E.; Pomella, S.; Cassandri, M.; Rota, R.; Marampon, F.; Marchese, C.; Schiavetti, A.; Megiorni, F. DNMT3A and DNMT3B targeting as an effective radiosensitizing strategy in embryonal rhabdomyosarcoma. Cells, 2021, 10(11), 2956.
[http://dx.doi.org/10.3390/cells10112956] [PMID: 34831178]
[65]
Lai, S.C.; Su, Y.T.; Chi, C.C.; Kuo, Y.C.; Lee, K.F.; Wu, Y.C.; Lan, P.C.; Yang, M.H.; Chang, T.S.; Huang, Y.H. DNMT3b/OCT4 expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation. J. Exp. Clin. Cancer Res., 2019, 38(1), 474.
[http://dx.doi.org/10.1186/s13046-019-1442-2] [PMID: 31771617]
[66]
Simó-Riudalbas, L.; Melo, S.A.; Esteller, M. DNMT3B gene amplification predicts resistance to DNA demethylating drugs. Genes Chromosomes Cancer, 2011, 50(7), 527-534.
[http://dx.doi.org/10.1002/gcc.20877] [PMID: 21484930]
[67]
Yu, J.; Qin, B.; Moyer, A.M.; Nowsheen, S.; Liu, T.; Qin, S.; Zhuang, Y.; Liu, D.; Lu, S.W.; Kalari, K.R.; Visscher, D.W.; Copland, J.A.; McLaughlin, S.A.; Moreno-Aspitia, A.; Northfelt, D.W.; Gray, R.J.; Lou, Z.; Suman, V.J.; Weinshilboum, R.; Boughey, J.C.; Goetz, M.P.; Wang, L. DNA methyltransferase expression in triple-negative breast cancer predicts sensitivity to decitabine. J. Clin. Invest., 2018, 128(6), 2376-2388.
[http://dx.doi.org/10.1172/JCI97924] [PMID: 29708513]
[68]
Stewart, M.L.; Tamayo, P.; Wilson, A.J.; Wang, S.; Chang, Y.M.; Kim, J.W.; Khabele, D.; Shamji, A.F.; Schreiber, S.L. KRAS genomic status predicts the sensitivity of ovarian cancer cells to decitabine. Cancer Res., 2015, 75(14), 2897-2906.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-2860] [PMID: 25968887]
[69]
Liu, H.; Li, P.; Wei, Z.; Zhang, C.; Xia, M.; Du, Q.; Chen, Y.; Liu, N.; Li, H.; Yang, X.P. Regulation of T cell differentiation and function by epigenetic modification enzymes. Semin. Immunopathol., 2019, 41(3), 315-326.
[http://dx.doi.org/10.1007/s00281-019-00731-w] [PMID: 30963214]
[70]
Kang, K.A.; Ryu, Y.S.; Piao, M.J.; Shilnikova, K.; Kang, H.K.; Yi, J.M.; Boulanger, M.; Paolillo, R.; Bossis, G.; Yoon, S.Y.; Kim, S.B.; Hyun, J.W. DUOX2-mediated production of reactive oxygen species induces epithelial mesenchymal transition in 5-fluorouracil resistant human colon cancer cells. Redox Biol., 2018, 17, 224-235.
[http://dx.doi.org/10.1016/j.redox.2018.04.020] [PMID: 29715584]
[71]
Tang, X.; Liang, Y.; Sun, G.; He, Q.; Hou, Z.; Jiang, X.; Gao, P.; Qu, H. Upregulation of CRABP2 by TET1-mediated DNA hydroxymethylation attenuates mitochondrial apoptosis and promotes oxaliplatin resistance in gastric cancer. Cell Death Dis., 2022, 13(10), 848.
[http://dx.doi.org/10.1038/s41419-022-05299-2] [PMID: 36195596]
[72]
Forloni, M.; Gupta, R.; Nagarajan, A.; Sun, L.S.; Dong, Y.; Pirazzoli, V.; Toki, M.; Wurtz, A.; Melnick, M.A.; Kobayashi, S.; Homer, R.J.; Rimm, D.L.; Gettinger, S.J.; Politi, K.; Dogra, S.K.; Wajapeyee, N. Oncogenic EGFR represses the TET1 DNA demethylase to induce silencing of tumor suppressors in cancer cells. Cell Rep., 2016, 16(2), 457-471.
[http://dx.doi.org/10.1016/j.celrep.2016.05.087] [PMID: 27346347]
[73]
Kharat, S.S.; Ding, X.; Swaminathan, D.; Suresh, A.; Singh, M.; Sengodan, S.K.; Burkett, S.; Marks, H.; Pamala, C.; He, Y.; Fox, S.D.; Buehler, E.C.; Muegge, K.; Martin, S.E.; Sharan, S.K. Degradation of 5hmC-marked stalled replication forks by APE1 causes genomic instability. Sci. Signal., 2020, 13(645), eaba8091.
[http://dx.doi.org/10.1126/scisignal.aba8091] [PMID: 32817374]
[74]
Kim, M.R.; Wu, M.J.; Zhang, Y.; Yang, J.Y.; Chang, C.J. TET2 directs mammary luminal cell differentiation and endocrine response. Nat. Commun., 2020, 11(1), 4642.
[http://dx.doi.org/10.1038/s41467-020-18129-w] [PMID: 32934200]
[75]
Kartikasari, A.E.R.; Huertas, C.S.; Mitchell, A.; Plebanski, M. Tumor-induced inflammatory cytokines and the emerging diagnostic devices for cancer detection and prognosis. Front. Oncol., 2021, 11, 692142.
[http://dx.doi.org/10.3389/fonc.2021.692142] [PMID: 34307156]
[76]
Baghban, R.; Roshangar, L.; Jahanban-Esfahlan, R.; Seidi, K.; Ebrahimi-Kalan, A.; Jaymand, M.; Kolahian, S.; Javaheri, T.; Zare, P. Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun. Signal., 2020, 18(1), 59.
[http://dx.doi.org/10.1186/s12964-020-0530-4] [PMID: 32264958]
[77]
Stenken, J.A.; Poschenrieder, A.J. Bioanalytical chemistry of cytokines - A review. Anal. Chim. Acta, 2015, 853, 95-115.
[http://dx.doi.org/10.1016/j.aca.2014.10.009] [PMID: 25467452]
[78]
Waldner, M.J.; Neurath, M.F. Targeting the VEGF signaling pathway in cancer therapy. Expert Opin. Ther. Targets, 2012, 16(1), 5-13.
[http://dx.doi.org/10.1517/14728222.2011.641951] [PMID: 22239434]
[79]
Goel, H.L.; Mercurio, A.M. VEGF targets the tumour cell. Nat. Rev. Cancer, 2013, 13(12), 871-882.
[http://dx.doi.org/10.1038/nrc3627] [PMID: 24263190]
[80]
Ikushima, H.; Miyazono, K. TGFβ signalling: A complex web in cancer progression. Nat. Rev. Cancer, 2010, 10(6), 415-424.
[http://dx.doi.org/10.1038/nrc2853] [PMID: 20495575]
[81]
Liu, X.; Yin, L.; Shen, S.; Hou, Y. Inflammation and cancer: paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis., 2023, 10(1), 151-164.
[http://dx.doi.org/10.1016/j.gendis.2021.09.006] [PMID: 37013041]
[82]
Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct. Target. Ther., 2021, 6(1), 263.
[http://dx.doi.org/10.1038/s41392-021-00658-5] [PMID: 34248142]
[83]
Nissinen, L.; Kähäri, V.M. Matrix metalloproteinases in inflammation. Biochim. Biophys. Acta, Gen. Subj., 2014, 1840(8), 2571-2580.
[http://dx.doi.org/10.1016/j.bbagen.2014.03.007] [PMID: 24631662]
[84]
Jordan, S.C.; Choi, J.; Kim, I.; Wu, G.; Toyoda, M.; Shin, B.; Vo, A. Interleukin-6, a cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: Therapeutic implications of IL-6 receptor blockade. Transplantation, 2017, 101(1), 32-44.
[http://dx.doi.org/10.1097/TP.0000000000001452] [PMID: 27547870]
[85]
Nguyen, D.P.; Li, J.; Tewari, A.K. Inflammation and prostate cancer: The role of interleukin 6 ( IL -6). BJU Int., 2014, 113(6), 986-992.
[http://dx.doi.org/10.1111/bju.12452] [PMID: 24053309]
[86]
Rotondo, J.C.; Mazziotta, C.; Lanzillotti, C.; Stefani, C.; Badiale, G.; Campione, G.; Martini, F.; Tognon, M. The role of purinergic P2X7 receptor in inflammation and cancer: Novel molecular insights and clinical applications. Cancers, 2022, 14(5), 1116.
[http://dx.doi.org/10.3390/cancers14051116] [PMID: 35267424]
[87]
Corazza, M.; Oton-Gonzalez, L.; Scuderi, V.; Rotondo, J.C.; Lanzillotti, C.; Di Mauro, G.; Tognon, M.; Martini, F.; Borghi, A. Tissue cytokine/chemokine profile in vulvar lichen sclerosus: An observational study on keratinocyte and fibroblast cultures. J. Dermatol. Sci., 2020, 100(3), 223-226.
[http://dx.doi.org/10.1016/j.jdermsci.2020.09.006] [PMID: 32998835]
[88]
Farrell, A.M.; Dean, D.; Millard, P.R.; Charnock, F.M.; Wojnarowska, F. Cytokine alterations in lichen sclerosus: An immunohistochemical study. Br. J. Dermatol., 2006, 155(5), 931-940.
[http://dx.doi.org/10.1111/j.1365-2133.2006.07414.x] [PMID: 17034521]
[89]
Hideshima, T.; Anderson, K.C. Signaling pathway mediating myeloma cell growth and survival. Cancers, 2021, 13(2), 216.
[http://dx.doi.org/10.3390/cancers13020216] [PMID: 33435632]
[90]
Tai, Y.T.; Fulciniti, M.; Hideshima, T.; Song, W.; Leiba, M.; Li, X.F.; Rumizen, M.; Burger, P.; Morrison, A.; Podar, K.; Chauhan, D.; Tassone, P.; Richardson, P.; Munshi, N.C.; Ghobrial, I.M.; Anderson, K.C. Targeting MEK induces myeloma-cell cytotoxicity and inhibits osteoclastogenesis. Blood, 2007, 110(5), 1656-1663.
[http://dx.doi.org/10.1182/blood-2007-03-081240] [PMID: 17510321]
[91]
Holkova, B.; Zingone, A.; Kmieciak, M.; Bose, P.; Badros, A.Z.; Voorhees, P.M.; Baz, R.; Korde, N.; Lin, H.Y.; Chen, J.Q.; Herrmann, M.; Xi, L.; Raffeld, M.; Zhao, X.; Wan, W.; Tombes, M.B.; Shrader, E.; Weir-Wiggins, C.; Sankala, H.; Hogan, K.T.; Doyle, A.; Annunziata, C.M.; Wellons, M.; Roberts, J.D.; Sullivan, D.; Landgren, O.; Grant, S. A phase II trial of AZD6244 (Selumetinib, ARRY-142886), an oral MEK1/2 Inhibitor, in relapsed/refractory multiple myeloma. Clin. Cancer Res., 2016, 22(5), 1067-1075.
[http://dx.doi.org/10.1158/1078-0432.CCR-15-1076] [PMID: 26446942]
[92]
Lee, M.; Rhee, I. Cytokine signaling in tumor progression. Immune Netw., 2017, 17(4), 214-227.
[http://dx.doi.org/10.4110/in.2017.17.4.214] [PMID: 28860951]
[93]
Huang, B.; Lang, X.; Li, X. The role of IL-6/JAK2/STAT3 signaling pathway in cancers. Front. Oncol., 2022, 12, 1023177.
[http://dx.doi.org/10.3389/fonc.2022.1023177] [PMID: 36591515]
[94]
Steelman, L.S.; Abrams, S.L.; Whelan, J.; Bertrand, F.E.; Ludwig, D.E.; Bäsecke, J.; Libra, M.; Stivala, F.; Milella, M.; Tafuri, A.; Lunghi, P.; Bonati, A.; Martelli, A.M.; McCubrey, J.A. Contributions of the Raf/MEK/ERK, PI3K/PTEN/Akt/mTOR and Jak/STAT pathways to leukemia. Leukemia, 2008, 22(4), 686-707.
[http://dx.doi.org/10.1038/leu.2008.26] [PMID: 18337767]
[95]
Ghermezi, M.; Spektor, T.M.; Berenson, J.R. The role of JAK inhibitors in multiple myeloma. Clin. Adv. Hematol. Oncol., 2019, 17(9), 500-505.
[PMID: 31549971]
[96]
Hideshima, T.; Cottini, F.; Ohguchi, H.; Jakubikova, J.; Gorgun, G.; Mimura, N.; Tai, Y-T.; Munshi, N.C.; Richardson, P.G.; Anderson, K.C. Rational combination treatment with histone deacetylase inhibitors and immunomodulatory drugs in multiple myeloma. Blood Cancer J., 2015, 5(5), e312.
[http://dx.doi.org/10.1038/bcj.2015.38] [PMID: 25978432]
[97]
Larsen, L.J.; Møller, L.B. Crosstalk of hedgehog and mTORC1 pathways. Cells, 2020, 9(10), 2316.
[http://dx.doi.org/10.3390/cells9102316] [PMID: 33081032]
[98]
Xiang, R.F.; Wang, Y.; Zhang, N.; Xu, W.B.; Cao, Y.; Tong, J.; Li, J.; Wu, Y.L.; Yan, H. MK2206 enhances the cytocidal effects of bufalin in multiple myeloma by inhibiting the AKT/mTOR pathway. Cell Death Dis., 2017, 8(5), e2776.
[http://dx.doi.org/10.1038/cddis.2017.188] [PMID: 28492559]
[99]
Mimura, N.; Hideshima, T.; Shimomura, T.; Suzuki, R.; Ohguchi, H.; Rizq, O.; Kikuchi, S.; Yoshida, Y.; Cottini, F.; Jakubikova, J.; Cirstea, D.; Gorgun, G.; Minami, J.; Tai, Y.T.; Richardson, P.G.; Utsugi, T.; Iwama, A.; Anderson, K.C. Selective and potent Akt inhibition triggers anti-myeloma activities and enhances fatal endoplasmic reticulum stress induced by proteasome inhibition. Cancer Res., 2014, 74(16), 4458-4469.
[http://dx.doi.org/10.1158/0008-5472.CAN-13-3652] [PMID: 24934808]
[100]
Zhang, T.; Ma, C.; Zhang, Z.; Zhang, H.; Hu, H. NF-κB signaling in inflammation and cancer. MedComm, 2021, 2(4), 618-653.
[http://dx.doi.org/10.1002/mco2.104] [PMID: 34977871]
[101]
Yang, C.; He, L.; He, P.; Liu, Y.; Wang, W.; He, Y.; Du, Y.; Gao, F. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med. Oncol., 2015, 32(2), 14.
[http://dx.doi.org/10.1007/s12032-014-0352-6] [PMID: 25572805]
[102]
Vahl, J.M.; Friedrich, J.; Mittler, S.; Trump, S.; Heim, L.; Kachler, K.; Balabko, L.; Fuhrich, N.; Geppert, C.I.; Trufa, D.I.; Sopel, N.; Rieker, R.; Sirbu, H.; Finotto, S. Interleukin-10-regulated tumour tolerance in non-small cell lung cancer. Br. J. Cancer, 2017, 117(11), 1644-1655.
[http://dx.doi.org/10.1038/bjc.2017.336] [PMID: 29016555]
[103]
Ni, M.; Qin, B.; Xie, L.; Zhang, X.; Yang, J.; Lv, H.; Yang, M.; Zhang, M. IL-13 contributes to drug resistance of NK/T-Cell lymphoma cells by regulating ABCC4. BioMed Res. Int., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/2606834] [PMID: 30643796]
[104]
Huanwen, W.; Zhiyong, L.; Xiaohua, S.; Xinyu, R.; Kai, W.; Tonghua, L. Intrinsic chemoresistance to gemcitabine is associated with constitutive and laminin-induced phosphorylation of FAK in pancreatic cancer cell lines. Mol. Cancer, 2009, 8(1), 125.
[http://dx.doi.org/10.1186/1476-4598-8-125] [PMID: 20021699]
[105]
Guan, J.; Zhang, H.; Wen, Z.; Gu, Y.; Cheng, Y.; Sun, Y.; Zhang, T.; Jia, C.; Lu, Z.; Chen, J. Retinoic acid inhibits pancreatic cancer cell migration and EMT through the downregulation of IL-6 in cancer associated fibroblast cells. Cancer Lett., 2014, 345(1), 132-139.
[http://dx.doi.org/10.1016/j.canlet.2013.12.006] [PMID: 24334138]
[106]
Bertran, E.; Crosas-Molist, E.; Sancho, P.; Caja, L.; Lopez-Luque, J.; Navarro, E.; Egea, G.; Lastra, R.; Serrano, T.; Ramos, E.; Fabregat, I. Overactivation of the TGF-β pathway confers a mesenchymal-like phenotype and CXCR4-dependent migratory properties to liver tumor cells. Hepatology, 2013, 58(6), 2032-2044.
[http://dx.doi.org/10.1002/hep.26597] [PMID: 23813475]
[107]
Conley-LaComb, M.K.; Saliganan, A.; Kandagatla, P.; Chen, Y.Q.; Cher, M.L.; Chinni, S.R. PTEN loss mediated Akt activation promotes prostate tumor growth and metastasis via CXCL12/CXCR4 signaling. Mol. Cancer, 2013, 12(1), 85.
[http://dx.doi.org/10.1186/1476-4598-12-85] [PMID: 23902739]
[108]
Choi, Y.H.; Burdick, M.D.; Strieter, B.A.; Mehrad, B.; Strieter, R.M. CXCR4, but not CXCR7, discriminates metastatic behavior in non-small cell lung cancer cells. Mol. Cancer Res., 2014, 12(1), 38-47.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0334] [PMID: 24025971]
[109]
Zhang, H.; Wu, H.; Guan, J.; Wang, L.; Ren, X.; Shi, X.; Liang, Z.; Liu, T. Paracrine SDF-1α signaling mediates the effects of PSCs on GEM chemoresistance through an IL-6 autocrine loop in pancreatic cancer cells. Oncotarget, 2015, 6(5), 3085-3097.
[http://dx.doi.org/10.18632/oncotarget.3099] [PMID: 25609203]
[110]
Tabe, Y.; Konopleva, M. Advances in understanding the leukaemia microenvironment. Br. J. Haematol., 2014, 164(6), 767-778.
[http://dx.doi.org/10.1111/bjh.12725] [PMID: 24405087]
[111]
Gordon, P.M.; Dias, S.; Williams, D.A. Cytokines secreted by bone marrow stromal cells protect c-KIT mutant AML cells from c-KIT inhibitor-induced apoptosis. Leukemia, 2014, 28(11), 2257-2260.
[http://dx.doi.org/10.1038/leu.2014.212] [PMID: 25030047]
[112]
Li, X.; Miao, H.; Zhang, Y.; Li, W.; Li, Z.; Zhou, Y.; Zhao, L.; Guo, Q. Bone marrow microenvironment confers imatinib resistance to chronic myelogenous leukemia and oroxylin A reverses the resistance by suppressing Stat3 pathway. Arch. Toxicol., 2015, 89(1), 121-136.
[http://dx.doi.org/10.1007/s00204-014-1226-6] [PMID: 24671465]
[113]
Traer, E.; MacKenzie, R.; Snead, J.; Agarwal, A.; Eiring, A.M.; O’Hare, T.; Druker, B.J.; Deininger, M.W. Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors. Leukemia, 2012, 26(5), 1140-1143.
[http://dx.doi.org/10.1038/leu.2011.325] [PMID: 22094585]
[114]
Cavarretta, I.T.; Neuwirt, H.; Untergasser, G.; Moser, P.L.; Zaki, M.H.; Steiner, H.; Rumpold, H.; Fuchs, D.; Hobisch, A.; Nemeth, J.A.; Culig, Z. The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1. Oncogene, 2007, 26(20), 2822-2832.
[http://dx.doi.org/10.1038/sj.onc.1210097] [PMID: 17072336]
[115]
Abasolo, I.; Montuenga, L.M.; Calvo, A. Adrenomedullin prevents apoptosis in prostate cancer cells. Regul. Pept., 2006, 133(1-3), 115-122.
[http://dx.doi.org/10.1016/j.regpep.2005.09.026] [PMID: 16297990]
[116]
Liu, C.; Zhu, Y.; Lou, W.; Cui, Y.; Evans, C.P.; Gao, A.C. Inhibition of constitutively active Stat3 reverses enzalutamide resistance in LNCaP derivative prostate cancer cells. Prostate, 2014, 74(2), 201-209.
[http://dx.doi.org/10.1002/pros.22741] [PMID: 24307657]
[117]
Shi, Z.; Yang, W.M.; Chen, L.P.; Yang, D.H.; Zhou, Q.; Zhu, J.; Chen, J.J.; Huang, R.C.; Chen, Z.S.; Huang, R.P. Enhanced chemosensitization in multidrug-resistant human breast cancer cells by inhibition of IL-6 and IL-8 production. Breast Cancer Res. Treat., 2012, 135(3), 737-747.
[http://dx.doi.org/10.1007/s10549-012-2196-0] [PMID: 22923236]
[118]
Yi, E.H.; Lee, C.S.; Lee, J.K.; Lee, Y.J.; Shin, M.K.; Cho, C.H.; Kang, K.W.; Lee, J.W.; Han, W.; Noh, D.Y.; Kim, Y.N.; Cho, I.H.; Ye, S. STAT3-RANTES autocrine signaling is essential for tamoxifen resistance in human breast cancer cells. Mol. Cancer Res., 2013, 11(1), 31-42.
[http://dx.doi.org/10.1158/1541-7786.MCR-12-0217] [PMID: 23074171]
[119]
Cavalloni, G.; Sarotto, I.; Pignochino, Y.; Gammaitoni, L.; Migliardi, G.; Sgro, L.; Piacibello, W.; Risio, M.; Aglietta, M.; Leone, F. Granulocyte-colony stimulating factor upregulates ErbB2 expression on breast cancer cell lines and converts primary resistance to trastuzumab. Anticancer Drugs, 2008, 19(7), 689-696.
[http://dx.doi.org/10.1097/CAD.0b013e3283050083] [PMID: 18594210]
[120]
Kim, J.W.; Kim, D.K.; Min, A.; Lee, K.H.; Nam, H.J.; Kim, J.H.; Kim, J.S.; Kim, T.Y.; Im, S.A.; Park, I.A. Amphiregulin confers trastuzumab resistance via AKT and ERK activation in HER2-positive breast cancer. J. Cancer Res. Clin. Oncol., 2016, 142(1), 157-165.
[http://dx.doi.org/10.1007/s00432-015-2012-4] [PMID: 26195282]
[121]
Liu, L.; Liu, Y.; Yan, X.; Zhou, C.; Xiong, X. The role of granulocyte colony‑stimulating factor in breast cancer development: A review. Mol. Med. Rep., 2020, 21(5), 2019-2029.
[http://dx.doi.org/10.3892/mmr.2020.11017] [PMID: 32186767]
[122]
Huang, S.L.; Chang, T.C.; Chao, C.C.K.; Sun, N.K. TLR4/IL-6/IRF1 signaling regulates androgen receptor expression: A potential therapeutic target to overcome taxol resistance in ovarian cancer. Biochem. Pharmacol., 2021, 186, 114456.
[http://dx.doi.org/10.1016/j.bcp.2021.114456] [PMID: 33556340]
[123]
Xu, S.; Yu, C.; Ma, X.; Li, Y.; Shen, Y.; Chen, Y.; Huang, S.; Zhang, T.; Deng, W.; Wang, Y. IL-6 promotes nuclear translocation of HIF-1α to aggravate chemoresistance of ovarian cancer cells. Eur. J. Pharmacol., 2021, 894, 173817.
[http://dx.doi.org/10.1016/j.ejphar.2020.173817] [PMID: 33345849]
[124]
Yousefi, H.; Momeny, M.; Ghaffari, S.H.; Parsanejad, N.; Poursheikhani, A.; Javadikooshesh, S.; Zarrinrad, G.; Esmaeili, F.; Alishahi, Z.; Sabourinejad, Z.; Sankanian, G.; Shamsaiegahkani, S.; Bashash, D.; Shahsavani, N.; Tavakkoly-Bazzaz, J.; Alimoghaddam, K.; Ghavamzadeh, A. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori, 2019, 105(1), 84-91.
[http://dx.doi.org/10.1177/0300891618784790] [PMID: 30021477]
[125]
Zhou, W.; Sun, W.; Yung, M.M.H.; Dai, S.; Cai, Y.; Chen, C.W.; Meng, Y.; Lee, J.B.; Braisted, J.C.; Xu, Y.; Southall, N.T.; Shinn, P.; Huang, X.; Song, Z.; Chen, X.; Kai, Y.; Cai, X.; Li, Z.; Hao, Q.; Cheung, A.N.Y.; Ngan, H.Y.S.; Liu, S.S.; Barak, S.; Hao, J.; Dai, Z.; Tzatsos, A.; Peng, W.; Pei, H.; Han, Z.; Chan, D.W.; Zheng, W.; Zhu, W. Autocrine activation of JAK2 by IL-11 promotes platinum drug resistance. Oncogene, 2018, 37(29), 3981-3997.
[http://dx.doi.org/10.1038/s41388-018-0238-8] [PMID: 29662190]
[126]
Singha, B.; Gatla, H.R.; Manna, S.; Chang, T.P.; Sanacora, S.; Poltoratsky, V.; Vancura, A.; Vancurova, I.; Vancurova, I. Proteasome inhibition increases recruitment of IκB kinase β (IKKβ), S536P-p65, and transcription factor EGR1 to interleukin-8 (IL-8) promoter, resulting in increased IL-8 production in ovarian cancer cells. J. Biol. Chem., 2014, 289(5), 2687-2700.
[http://dx.doi.org/10.1074/jbc.M113.502641] [PMID: 24337575]
[127]
Porta, C.; Paglino, C.; De Amici, M.; Quaglini, S.; Sacchi, L.; Imarisio, I.; Canipari, C. Predictive value of baseline serum vascular endothelial growth factor and neutrophil gelatinase-associated lipocalin in advanced kidney cancer patients receiving sunitinib. Kidney Int., 2010, 77(9), 809-815.
[http://dx.doi.org/10.1038/ki.2009.552] [PMID: 20147887]
[128]
Ishibashi, K.; Koguchi, T.; Matsuoka, K.; Onagi, A.; Tanji, R.; Takinami-Honda, R.; Hoshi, S.; Onoda, M.; Kurimura, Y.; Hata, J.; Sato, Y.; Kataoka, M.; Ogawsa, S.; Haga, N.; Kojima, Y. Interleukin-6 induces drug resistance in renal cell carcinoma. Fukushima J. Med. Sci., 2018, 64(3), 103-110.
[http://dx.doi.org/10.5387/fms.2018-15] [PMID: 30369518]
[129]
Obenauf, A.C.; Zou, Y.; Ji, A.L.; Vanharanta, S.; Shu, W.; Shi, H.; Kong, X.; Bosenberg, M.C.; Wiesner, T.; Rosen, N.; Lo, R.S.; Massagué, J. Therapy-induced tumour secretomes promote resistance and tumour progression. Nature, 2015, 520(7547), 368-372.
[http://dx.doi.org/10.1038/nature14336] [PMID: 25807485]
[130]
Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; Davis, A.; Mongare, M.M.; Gould, J.; Frederick, D.T.; Cooper, Z.A.; Chapman, P.B.; Solit, D.B.; Ribas, A.; Lo, R.S.; Flaherty, K.T.; Ogino, S.; Wargo, J.A.; Golub, T.R. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature, 2012, 487(7408), 500-504.
[http://dx.doi.org/10.1038/nature11183] [PMID: 22763439]
[131]
Yano, S.; Wang, W.; Li, Q.; Matsumoto, K.; Sakurama, H.; Nakamura, T.; Ogino, H.; Kakiuchi, S.; Hanibuchi, M.; Nishioka, Y.; Uehara, H.; Mitsudomi, T.; Yatabe, Y.; Nakamura, T.; Sone, S. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res., 2008, 68(22), 9479-9487.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-1643] [PMID: 19010923]
[132]
Lee, H.J.; Zhuang, G.; Cao, Y.; Du, P.; Kim, H.J.; Settleman, J. Drug resistance via feedback activation of Stat3 in oncogene-addicted cancer cells. Cancer Cell, 2014, 26(2), 207-221.
[http://dx.doi.org/10.1016/j.ccr.2014.05.019] [PMID: 25065853]
[133]
Liao, J.; Chen, Z.; Yu, Z.; Huang, T.; Hu, D.; Su, Y.; He, Z.; Zou, C.; Zhang, L.; Lin, X. The role of ARL4C in erlotinib resistance: Activation of the Jak2/Stat 5/β-catenin signaling pathway. Front. Oncol., 2020, 10, 585292.
[http://dx.doi.org/10.3389/fonc.2020.585292] [PMID: 33194732]
[134]
Turke, A.B.; Zejnullahu, K.; Wu, Y.L.; Song, Y.; Dias-Santagata, D.; Lifshits, E.; Toschi, L.; Rogers, A.; Mok, T.; Sequist, L.; Lindeman, N.I.; Murphy, C.; Akhavanfard, S.; Yeap, B.Y.; Xiao, Y.; Capelletti, M.; Iafrate, A.J.; Lee, C.; Christensen, J.G.; Engelman, J.A.; Jänne, P.A. Preexistence and clonal selection of MET amplification in EGFR mutant NSCLC. Cancer Cell, 2010, 17(1), 77-88.
[http://dx.doi.org/10.1016/j.ccr.2009.11.022] [PMID: 20129249]
[135]
Ham, I.H.; Oh, H.J.; Jin, H.; Bae, C.A.; Jeon, S.M.; Choi, K.S.; Son, S.Y.; Han, S.U.; Brekken, R.A.; Lee, D.; Hur, H. Targeting interleukin-6 as a strategy to overcome stroma-induced resistance to chemotherapy in gastric cancer. Mol. Cancer, 2019, 18(1), 68.
[http://dx.doi.org/10.1186/s12943-019-0972-8] [PMID: 30927911]
[136]
Xu, J.; Lin, H.; Wu, G.; Zhu, M.; Li, M. IL-6/STAT3 is a promising therapeutic target for hepatocellular carcinoma. Front. Oncol., 2021, 11, 760971.
[http://dx.doi.org/10.3389/fonc.2021.760971] [PMID: 34976809]
[137]
He, W.; Luistro, L.; Carvajal, D.; Smith, M.; Nevins, T.; Yin, X.; Cai, J.; Higgins, B.; Kolinsky, K.; Rizzo, C.; Packman, K.; Heimbrook, D.; Boylan, J.F. High tumor levels of IL6 and IL8 abrogate preclinical efficacy of the γ-secretase inhibitor, RO4929097. Mol. Oncol., 2011, 5(3), 292-301.
[http://dx.doi.org/10.1016/j.molonc.2011.01.001] [PMID: 21315665]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy