Skip to main content

Advertisement

Log in

Phytohemagglutinin from Phaseolus vulgaris enhances the lung cancer cell chemotherapy sensitivity by changing cell membrane permeability

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

Chemotherapy is still a prevalent strategy for clinical lung cancer treatment. However, the inevitable emerged drug resistance has become a great hurdle to therapeutic effect. Studies have demonstrated that the primary cause of drug resistance is a decrease in the chemotherapeutic medicine concentration. Several lectins have been confirmed to be effective as chemotherapy adjuvants, enhancing the anti-tumor effects of chemotherapy drugs. Here, we combined phytohemagglutinin (PHA), which has been reported possess anti-tumor effects, with chemotherapy drugs Cisplatin (DDP) and Adriamycin (ADM) on lung cancer cells to detect the sensitivities of PHA as a chemotherapy adjuvant. Our results demonstrated that the PHA significantly enhanced the sensitivity of lung cancer cells to DDP and ADM, and Western blot showed that PHA combined with DDP or ADM enhance cytotoxic effects by inhibiting autophagy and promoting apoptosis. More importantly, we found PHA enhanced the chemotherapeutic drugs cytotoxicity by changing the cell membrane to increase the intracellular chemotherapeutic drugs concentration. Besides, the combination of PHA and ADM increased the ADM concentration in the multidrug-resistant strain A549-R cells and achieved the drug sensitization effect. Our results suggest that PHA combined with chemotherapy can be applied in the treatment of lung cancer cells and lung cancer multidrug-resistant strains, and provide a novel strategy for clinical tumor chemotherapy and a new idea to solve the problem of drug resistance in clinical lung cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Siegel RL, Miller KD, Fuchs HE, Jemal A (2021) Cancer statistics. CA Cancer J Clin 71(1):7–33. https://doi.org/10.3322/caac.21654

    Article  PubMed  Google Scholar 

  2. Zhang C, Xu C, Gao X, Yao Q (2022) Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 12(5):2115–2132. https://doi.org/10.7150/thno.69424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fennell DA, Summers Y, Cadranel J et al (2016) Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. Cancer Treat Rev 44:42–50. https://doi.org/10.1016/j.ctrv.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  4. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378. https://doi.org/10.1016/j.ejphar.2014.07.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4(4):307–320. https://doi.org/10.1038/nrd1691

    Article  CAS  PubMed  Google Scholar 

  6. Lv P, Man S, Xie L, Ma L, Gao W (1876) Pathogenesis and therapeutic strategy in platinum resistance lung cancer. Biochim Biophys Acta Rev Cancer 1:188577. https://doi.org/10.1016/j.bbcan.2021.188577

    Article  CAS  Google Scholar 

  7. Romani AMP (2022) Cisplatin in cancer treatment. Biochem Pharmacol 206:115323. https://doi.org/10.1016/j.bcp.2022.1153238

    Article  CAS  PubMed  Google Scholar 

  8. Müller I, Niethammer D, Bruchelt G (1998) Anthracycline-derived chemotherapeutics in apoptosis and free radical cytotoxicity (Review). Int J Mol Med 1(2):491–494. https://doi.org/10.3892/ijmm.1.2.491

    Article  PubMed  Google Scholar 

  9. Rawat PS, Jaiswal A, Khurana A, Bhatti JS, Navik U (2021) Doxorubicin-induced cardiotoxicity: an update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother 139:111708. https://doi.org/10.1016/j.biopha.2021.111708

    Article  CAS  PubMed  Google Scholar 

  10. Van DammeEls JM, Willy J (1998) Plant Lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci 17(6):575–692. https://doi.org/10.1080/07352689891304276

    Article  Google Scholar 

  11. Costa ACM, Malveira EA, Mendonça LP, Maia MES, Silva RRS, Roma RR, Aguiar TKB, Grangeiro YA, Souza PFN (2022) Plant lectins: a review on their biotechnological potential toward human pathogens. Curr Protein Pept Sci 23(12):851–861. https://doi.org/10.2174/1389203724666221014142740

    Article  CAS  PubMed  Google Scholar 

  12. Tsaneva M, Van Damme EJM (2020) 130 years of plant lectin research. Glycoconj J 37(5):533–551. https://doi.org/10.1007/s10719-020-09942-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Takayama H, Ohta M, Iwashita Y, Uchida H, Shitomi Y, Yada K, Inomata M (2020) Altered glycosylation associated with dedifferentiation of hepatocellular carcinoma: a lectin microarray-based study. BMC Cancer 20(1):192. https://doi.org/10.1186/s12885-020-6699-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Teeravirote K, Luang S, Waraasawapati S, Boonsiri P, Wongkham C, Wongkham S, Silsirivanit A (2021) A novel serum glycobiomarker for diagnosis and prognosis of cholangiocarcinoma detected by butea monosperma agglutinin. Molecules 26(9):2782. https://doi.org/10.3390/molecules26092782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sha S, Wang Y, Liu M, Liu G, Fan N, Li Z, Dong W (2022) Phaseolus vulgaris Erythroagglutinin (PHA-E)-positive ceruloplasmin acts as a potential biomarker in pancreatic cancer diagnosis. Cells 11(15):2453. https://doi.org/10.3390/cells11152453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kurhade SE, Ross P, Gao FP, Farrell MP (2022) Lectin drug conjugates targeting high mannose N-glycans. ChemBioChem 23(19):e202200266. https://doi.org/10.1002/cbic.202200266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Huo F, Zhang Y, Li Y, Bu H, Zhang Y, Li W, Guo Y, Wang L, Jia R, Huang T, Zhang W, Li P, Ding L, Yan C (2022) Mannose-targeting concanavalin A-epirubicin conjugate for targeted intravesical chemotherapy of bladder cancer. Chem Asian J 17(16):e202200342. https://doi.org/10.1002/asia.202200342

    Article  CAS  PubMed  Google Scholar 

  18. Franca L, Ferraz M, Barros MC, Gibson V, Xavier-Júnior FH, Magalhães NSS, Lira-Nogueira M (2022) ConA-coated liposomes as a system to delivery β-Lapachone to breast cancer cells. Anticancer Agents Med Chem 22(5):968–977. https://doi.org/10.2174/1871520621666210624112452

    Article  CAS  PubMed  Google Scholar 

  19. Souza MA, Carvalho FC, Ruas LP, Ricci-Azevedo R, Roque-Barreira MC (2013) The immunomodulatory effect of plant lectins: a review with emphasis on ArtinM properties. Glycoconj J 30(7):641–657. https://doi.org/10.1007/s10719-012-9464-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gupta B, Sadaria D, Warrier VU, Kirtonia A, Kant R, Awasthi A, Baligar P, Pal JK, Yuba E, Sethi G, Garg M, Gupta RK (2022) Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy. Semin Cancer Biol 80:87–106. https://doi.org/10.1016/j.semcancer.2020.02.005

    Article  CAS  PubMed  Google Scholar 

  21. Fu LL, Zhou CC, Yao S, Yu JY, Liu B, Bao JK (2011) Plant lectins: targeting programmed cell death pathways as antitumor agents. Int J Biochem Cell Biol 43(10):1442–1449. https://doi.org/10.1016/j.biocel.2011.07.004

    Article  CAS  PubMed  Google Scholar 

  22. Gautam AK, Sharma D, Sharma J, Saini KC (2020) Legume lectins: potential use as a diagnostics and therapeutics against the cancer. Int J Biol Macromol 142:474–483. https://doi.org/10.1016/j.ijbiomac.2019.09.119

    Article  CAS  PubMed  Google Scholar 

  23. Bektas S, Kaptan E (2022) RNA-Seq transcriptome analysis reveals Maackia amurensis leukoagglutinin has antitumor activity in human anaplastic thyroid cancer cells. Mol Biol Rep 49(10):9257–9266. https://doi.org/10.1007/s11033-022-07759-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Leal RB, Mann J, Pinto-Junior VR, Oliveira MV, Osterne VJS, Wolin IAV, Nascimento APM, Welter PG, Ferreira VMS, Silva AA, Seeger RL, Nascimento KS, Cavada BS (2022) Structural prediction and characterization of canavalia grandiflora (ConGF) lectin complexed with MMP1: unveiling the antiglioma potential of legume lectins. Molecules 27(20):7089. https://doi.org/10.3390/molecules27207089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Katoch R, Tripathi A (2021) Research advances and prospects of legume lectins. J Biosci 46(4):104. https://doi.org/10.1007/s12038-021-00225-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Parshenkov A, Hennet T (2022) Glycosylation-dependent induction of programmed cell death in murine adenocarcinoma cells. Front Immunol 13:797759. https://doi.org/10.3389/fimmu.2022.797759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bhutia SK, Panda PK, Sinha N et al (2019) Plant lectins in cancer therapeutics: targeting apoptosis and autophagy-dependent cell death. Pharmacol Res 144:8–18. https://doi.org/10.1016/j.phrs.2019.04.001

    Article  CAS  PubMed  Google Scholar 

  28. von Schoen-Angerer T, Goyert A, Vagedes J, Kiene H, Merckens H, Kienle GS (2014) Disappearance of an advanced adenomatous colon polyp after intratumoural injection with Viscum album (European mistletoe) extract: a case report. J Gastrointestin Liver Dis 23(4):449–452. https://doi.org/10.15403/jgld.2014.1121.234.acpy

    Article  Google Scholar 

  29. Schad F, Thronicke A, Steele ML, Merkle A, Matthes B, Grah C, Matthes H (2022) Correction: overall survival of stage IV non-small cell lung cancer patients treated with Viscum album L. in addition to chemotherapy, a real-world observational multicenter analysis. PLoS ONE 17(8):e0273387. https://doi.org/10.1371/journal.pone.0273387

    Article  PubMed  PubMed Central  Google Scholar 

  30. ChhetraLalli R, Kaur K, Dadsena S, Chakraborti A, Srinivasan R, Ghosh S (2015) Maackia amurensis agglutinin enhances paclitaxel induced cytotoxicity in cultured non-small cell lung cancer cells. Biochimie 115:93–107. https://doi.org/10.1016/j.biochi.2015.05.002

    Article  CAS  Google Scholar 

  31. Freudlsperger C, Dahl A, Hoffmann J, Reinert S, Schumacher U (2010) Mistletoe lectin-I augments antiproliferative effects of the PPARγ agonist rosiglitazone on human malignant melanoma cells. Phytother Res 24(9):1354–1358. https://doi.org/10.1002/ptr.3122

    Article  CAS  PubMed  Google Scholar 

  32. Galm O, Fabry U, Efferth T, Osieka R (2002) Synergism between rViscumin and cisplatin is not dependent on ERCC-1 expression. Cancer Lett 187(1–2):43–51. https://doi.org/10.1016/s0304-3835(02)00411-1

    Article  Google Scholar 

  33. Siegle I, Fritz P, McClellan M, Gutzeit S, Mürdter TE (2001) Combined cytotoxic action of Viscum album agglutinin-1 and anticancer agents against human A549 lung cancer cells. Anticancer Res 21(4A):2687–2691

    CAS  PubMed  Google Scholar 

  34. Rigas DA, Osgood EE (1955) Purification and properties of the phytohemagglutinin of Phaseolus vulgaris. J Biol Chem 212(2):607–615

    Article  CAS  PubMed  Google Scholar 

  35. Loris R, Hamelryck T, Bouckaert J, Wyns L (1998) Legume lectin structure. Biochim Biophys Acta 1383(1):9–36. https://doi.org/10.1016/s0167-4838(97)00182-9

    Article  CAS  PubMed  Google Scholar 

  36. Alhallak K, Sun J, Muz B, Jeske A, O’Neal J, Ritchey JK, Achilefu S, DiPersio JF, Azab AK (2022) Liposomal phytohemagglutinin: in vivo T-cell activator as a novel pan-cancer immunotherapy. J Cell Mol Med 26(3):940–944. https://doi.org/10.1111/jcmm.16885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Liwnicz BH (1982) Mitogenic lectin receptors of nervous system tumors. Study of gliomas, neural crest tumors, and meningiomas in vitro using phytohemagglutinin and concanavalin A. J Neuropathol Exp Neurol 41(3):281–297

    Article  CAS  PubMed  Google Scholar 

  38. Mazumder A, Grimm EA, Rosenberg RSA (1983) Characterization of the lysis of fresh human solid tumors by autologous lymphocytes activated in vitro with phytohemagglutinin. J Immunol 130(2):958–964

    Article  CAS  PubMed  Google Scholar 

  39. Zhang Q, Li Z, Xu K et al (2019) Intracellular concentration and transporters in imatinib resistance of gastrointestinal stromal tumor. Scand J Gastroenterol 54(2):220–226. https://doi.org/10.1080/00365521.2019.1577488

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  40. Vaidyanathan A, Sawers L, Gannon AL et al (2016) ABCB1 (MDR1) induction defines a common resistance mechanism in paclitaxel- and olaparib-resistant ovarian cancer cells. Br J Cancer 115(4):431–441. https://doi.org/10.1038/bjc.2016.203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Aub JC, Tieslau C, Lankester A (1963) Reactions of normal and tumor cell surfaces to enzymes, I. Wheat-germ lipase and associated mucopolysaccharides. Proc Natl Acad Sci USA 50(4):613–619. https://doi.org/10.1073/pnas.50.4.613

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  42. Chin KV, Pastan I, Gottesman MM (1993) Function and regulation of the human multidrug resistance gene. Adv Cancer Res 60:157–180. https://doi.org/10.1016/s0065-230x(08)60825-8

    Article  CAS  PubMed  Google Scholar 

  43. Bukowski K, Kciuk M, Kontek R (2020) Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 21(9):3233. https://doi.org/10.3390/ijms21093233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang JQ, Wu ZX, Yang Y, Teng QX, Li YD, Lei ZN, Jani KA, Kaushal N, Chen ZS (2021) ATP-binding cassette (ABC) transporters in cancer: a review of recent updates. J Evid Based Med 14(3):232–256. https://doi.org/10.1111/jebm.12434

    Article  PubMed  Google Scholar 

  45. Engle K, Kumar G (2022) Cancer multidrug-resistance reversal by ABCB1 inhibition: a recent update. Eur J Med Chem 239:114542. https://doi.org/10.1016/j.ejmech.2022.114542

    Article  CAS  PubMed  Google Scholar 

  46. Zhang Q, Li Z, Xu K, Qian Y, Chen M, Sun L, Song S, Huang X, He Z, Li F, Zhang D, Yang L, Wang Y, Xu H, Xu Z (2019) Intracellular concentration and transporters in imatinib resistance of gastrointestinal stromal tumor. Scand J Gastroenterol 54(2):220–226. https://doi.org/10.1080/00365521.2019.1577488

    Article  CAS  PubMed  Google Scholar 

  47. Mohammad IS, He W, Yin L (2018) Understanding of human ATP binding cassette superfamily and novel multidrug resistance modulators to overcome MDR. Biomed Pharmacother 100:335–348. https://doi.org/10.1016/j.biopha.2018.02.038

    Article  CAS  PubMed  Google Scholar 

  48. Sakthivel R, Malar DS, Devi KP (2018) Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed Pharmacother 105:742–752. https://doi.org/10.1016/j.biopha.2018.06.035

    Article  CAS  PubMed  Google Scholar 

  49. Zheng X, Li D, Zhao C et al (2014) Reversal of multidrug resistance in vitro and in vivo by 5-N-formylardeemin, a new ardeemin derivative. Apoptosis 19(8):1293–1300. https://doi.org/10.1007/s10495-014-0998-8

    Article  CAS  PubMed  Google Scholar 

  50. D’Costa SS, Hurwitz JL (2003) Phytohemagglutinin inhibits lymphoid tumor growth in vitro and in vivo. Leuk Lymphoma 44(10):1785–1791. https://doi.org/10.1080/1042819031000119217

    Article  CAS  PubMed  Google Scholar 

  51. Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB (2008) Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 15(1):171–182. https://doi.org/10.1038/sj.cdd.4402233

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Dr. Hui Wang from Pub-Lab Platform, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, for assistance with the flow cytometry (BD, FACS Melody) and fluorescence microscope (Zeiss, AxioObserver7).

Funding

This research was funded by the Undergraduate Innovation and Entrepreneurship Training Program of Sichuan University.

Author information

Authors and Affiliations

Authors

Contributions

PPW, and XW designed the experiments. PPW, STM, JMH, CLC and DPW performed the experiments and collected the data. STM supervised the experiments, interpreted the data and wrote the article. PPW supervised and complemented the writing. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Xia Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1096 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, P., Min, S., Chen, C. et al. Phytohemagglutinin from Phaseolus vulgaris enhances the lung cancer cell chemotherapy sensitivity by changing cell membrane permeability. J Nat Med 78, 355–369 (2024). https://doi.org/10.1007/s11418-023-01772-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01772-0

Keyword

Navigation