Skip to main content
Log in

Linderapyrone analogue LPD-01 as a cancer treatment agent by targeting importin7

  • Original Paper
  • Published:
Journal of Natural Medicines Aims and scope Submit manuscript

Abstract

The Wnt/β-catenin signaling pathway plays important roles in several cancer cells, including cell proliferation and development. We previously succeeded in synthesizing a small molecule compound inhibiting the Wnt/β-catenin signaling pathway, named LPD-01 (1), and 1 inhibited the growth of human colorectal cancer (HT-29) cells. In this study, we revealed that 1 inhibits the growth of HT-29 cells stronger than that of another human colorectal cancer (SW480) cells. Therefore, we have attempted to identify the target proteins of 1 in HT-29 cells. Firstly, we investigated the effect on the expression levels of the Wnt/β-catenin signaling pathway-related proteins. As a result, 1 inhibited the expression of target proteins of Wnt/β-catenin signaling pathway (c-Myc and Survivin) and their genes, whereas the amount of transcriptional co-activator (β-catenin) was not decreased, suggesting that 1 inhibited the Wnt/β-catenin signaling pathway without affecting β-catenin. Next, we investigated the target proteins of 1 using magnetic FG beads. Chemical pull-down assay combined with mass spectrometry suggested that 1 directly binds to importin7. As expected, 1 inhibited the nuclear translocation of importin7 cargoes such as Smad2 and Smad3 in TGF-β-stimulated HT-29 cells. In addition, the knockdown of importin7 by siRNA reduced the expression of target genes of Wnt/β-catenin signaling pathway. These results suggest that importin7 is one of the target proteins of 1 for inhibition of the Wnt/β-catenin signaling pathway.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fuentes RG, Toume K, Arai MA, Sadhu SK, Ahmed F, Ishibashi M (2015) Scopadulciol, isolated from Scoparia dulcis, induces β-catenin degradation and overcomes tumor necrosis factor-related apoptosis ligand resistance in AGS human gastric adenocarcinoma cells. J Nat Prod 78:864–872

    Article  CAS  PubMed  Google Scholar 

  2. Zhang Y, Wang X (2020) Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol 13:165

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ashihara E, Takada T, Maekawa T (2015) Targeting the canonical Wnt/β-catenin pathway in hematological malignancies. Cancer Sci 106:665–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wakabayashi R, Hattori Y, Hosogi S, Toda Y, Takata K, Ashihara E (2021) A novel dipeptide type inhibitor of the Wnt/β-catenin pathway suppresses proliferation of acute myelogenous leukemia cells. Biochem Biophys Res Commun 535:73–79

    Article  CAS  PubMed  Google Scholar 

  5. Chhabra R (2015) Cervical cancer stem cells: opportunities and challenges. J Cancer Res Clin Oncol 141:1889–1897

    Article  CAS  PubMed  Google Scholar 

  6. Ohishi K, Toume K, Arai MA, Koyano T, Kowithayakorn T, Mizoguchi T, Itoh M, Ishibashi M (2015) 9-Hydroxycanthin-6-one, a β-carboline alkaloid from Eurycoma longifolia, is the first Wnt signal inhibitor through activation of glycogen synthase kinase 3β without depending on casein kinase 1α. J Nat Prod 78:1139–1146

    Article  CAS  PubMed  Google Scholar 

  7. Parker TW, Neufeld KL (2020) APC controls Wnt-induced β-catenin destruction complex recruitment in human colonocytes. Sci Rep 10:2957

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  8. He TC, Sparks AB, Rago C, Hermeking H, Zawel L, Da Costa LT, Morin PJ, Vogelstein B, Kinzler KW (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Kim PJ, Plescia J, Clevers H, Fearon ER, Altieri DC (2003) Survivin and molecular pathogenesis of colorectal cancer. Lancet 362:205–209

    Article  CAS  PubMed  Google Scholar 

  10. Matsumoto T, Imahori D, Saito Y, Zhang W, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T (2020) Cytotoxic activities of sesquiterpenoids from the aerial parts of Petasites japonicus against cancer stem cells. J Nat Med 74:689–701

    Article  CAS  PubMed  Google Scholar 

  11. Matsumoto T, Imahori D, Ohnishi E, Okayama M, Kitagawa T, Ohta T, Yoshida T, Kojima N, Yamashita M, Watanabe T (2022) Chemical structures and induction of cell death via heat shock protein inhibition of the prenylated phloroglucinol derivatives isolated from Hypericum erectum. Fitoterapia 156:105097

    Article  Google Scholar 

  12. Matsumoto T, Kitagawa T, Imahori D, Yoshikawa H, Okayama M, Kobayashi M, Kojima N, Yamashita M, Watanabe T (2021) Cell death-inducing activities via Hsp inhibition of the sesquiterpenes isolated from Valeriana fauriei. J Nat Med 75:942–948

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto T, Ohnishi E, Kitagawa T, Okayama M, Saito Y, Yoshikawa H, Ohta T, Yoshida T, Nakayama Y, Watanabe T (2023) Azaphilones produced by Penicillium maximae with their cell death-inducing activity on Adriamycin-treated cancer cell. Genes Environ 45:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Matsumoto T, Kitagawa T, Imahori D, Matsuzaki A, Saito Y, Ohta T, Yoshida T, Nakayama Y, Ashihara E, Watanabe T (2021) Linderapyrone: a Wnt signal inhibitor isolated from Lindera umbellata. Bioorg Med Chem Lett 45:128161

    Article  CAS  PubMed  Google Scholar 

  15. Lott K, Cingolani G (2011) The importinβbinding domain as a master regulator of nucleocytoplasmic transport. Biochim Biophys Acta 1813:1578–1592

    Article  CAS  PubMed  Google Scholar 

  16. Harel A, Forbes DJ (2004) Importin beta: conducting a much larger cellular symphony. Mol Cell 16:319–330

    CAS  PubMed  Google Scholar 

  17. García-García M, Sánchez-Perales S, Jarabo P, Calvo E, Huyton T, Fu L, Ng SC, Sotodosos-Alonso L, Vázquez J, Casas-Tintó S, Görlich D, Echarri A, Del Pozo MA (2022) Mechanical control of nuclear import by importin-7 is regulated by its dominant cargo YAP. Nat Commun 13:1174

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  18. Li SR, Gyselman VG, Dorudi S, Bustin SA (2000) Elevated levels of RanBP7 mRNA in colorectal carcinoma are associated with increased proliferation and are similar to the transcription pattern of the proto-oncogene c-myc. Biochem Biophys Res Commun 271:537–543

    Article  CAS  PubMed  Google Scholar 

  19. Chen J, Hu Y, Teng Y, Yang BK (2021) Increased nuclear transporter importin 7 contributes to the tumor growth and correlates with CD8 T cell infiltration in cervical cancer. Front Cell Dev Biol 9:732786

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu L, Yao X, Chen X, Lu P, Zhang B, Ip YT (2007) Msk is required for nuclear import of TGF-β/BMP-activated Smads. J Cell Biol 178:981–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hirota M, Watanabe K, Hamada S, Sun Y, Strizzi L, Mancino M, Nagaoka T, Gonzales M, Seno M, Bianco C, Salomon DS (2008) Smad2 functions as a co-activator of canonical Wnt/β-catenin signaling pathway independent of Smad4 through histone acetyltransferase activity of p300. Cell Signall 20:1632–1641

    Article  CAS  Google Scholar 

  22. Lei S, Dubeykovskiy A, Chakladar A, Wojtukiewicz L, Wang TC (2004) The murine gastrin promoter is synergistically activated by transforming growth factor-β/Smad and Wnt signaling pathways. J Biol Chem 279:42492–42502

    Article  CAS  PubMed  Google Scholar 

  23. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, Moon RT, Teo JL, Oh SW, Kim HY, Moon SH, Ha JR, Kahn M (2004) A small molecule inhibitor of β-catenin/CREB-binding protein transcription. Proc Natl Acad Sci U S A 101:12682–12687

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  24. Shigeyasu K, Okugawa Y, Toden S, Boland CR, Goel A (2017) Exportin-5 functions as an oncogene and a potential therapeutic target in colorectal cancer. Clin Cancer Res 23:1312–1322

    Article  CAS  PubMed  Google Scholar 

  25. Yao X, Chen X, Cottonham C, Xu L (2008) Preferential utilization of imp7/8 in nuclear import of Smads. J Biol Chem 283:22867–22874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian H, Liu C, Yu J, Han J, Du J, Liang S, Wang W, Liu Q, Lian R, Zhu T, Wu S, Tao T, Ye Y, Zhao J, Yang Y, Zhu X, Cai J, Wu J, Li M (2023) PHF14 enhances DNA methylation of SMAD7 gene to promote TGF-β-driven lung adenocarcinoma metastasis. Cell Discov 9:41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen Q, Guo H, Jiang H, Hu Z, Yang X, Yuan Z, Gao Y, Zhang G, Bai Y (2023) S100A2 induces epithelial-mesenchymal transition and metastasis in pancreatic cancer by coordinating transforming growth factorβsignaling in SMAD4-dependent manner. Cell Death Discov 9:356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yang H, Yue GGL, Yuen KK, Gao S, Leung PC, Wong CK, Lau CBS (2023) Mechanistic insights into the anti-tumor and anti-metastatic effects of Patrinia villosa aqueous extract in colon cancer via modulation of TGF-β R1-smad2/3-E-cadherin and FAK-RhoA-cofilin pathways. Phytomedicine 117:154900

    Article  CAS  PubMed  Google Scholar 

  29. Morikawa M, Derynck R, Miyazono K (2016) TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harbor Perspect Biol 8:a021873

    Article  Google Scholar 

  30. Soderholm JF, Bird SL, Kalab P, Sampathkumar Y, Hasegawa K, Uehara-Bingen M, Weis K, Heald R (2011) Importazole, a small molecule inhibitor of the transport receptor importin-β. ACS Chem Biol 6:700–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Martiniano B (2021) Elucidation of the inhibitory activity of ivermectin with host nuclear importin α and several SARS-CoV-2 targets. J Biomol Struct Dyn 40:8375–8383

    Google Scholar 

  32. Van Der Watt PJ, Chi A, Stelma T, Stowell C, Strydom E, Carden S, Angus L, Hadley K, Lang D, Wei W, Birrer MJ, Trent JO, Leaner VD (2016) Targeting the nuclear import receptor Kpnβ1 as an anticancer therapeutic. Mol Cancer Ther 15:560–573

    Article  PubMed  Google Scholar 

  33. Görlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  Google Scholar 

  34. Hsu YL, Lin CC, Jiang JK, Lin HH, Lan YT, Wang HS, Yang SH, Chen WS, Lin TC, Lin JK, Lin PC, Chang SC (2019) Clinicopathological and molecular differences in colorectal cancer according to location. Int J Biol Markers 34:47–53

    Article  CAS  PubMed  Google Scholar 

  35. Oyanagi H, Shimada Y, Nagahashi M, Ichikawa H, Tajima Y, Abe K, Nakano M, Kameyama H, Takii Y, Kawasaki T, Homma KI, Ling Y, Okuda S, Takabe K, Wakai T (2019) SMAD4 alteration associates with invasive-front pathological markers and poor prognosis in colorectal cancer. Histopathol 74:873–882

    Article  Google Scholar 

  36. Refaat B, Zekri J, Aslam A, Ahmad J, Baghdadi MA, Meliti A, Idris S, Sultan S, Alardati H, Saimeh HA, Alsaegh A, Alhadrami M, Hamid T, Naeem ME, Elsamany SA (2021) Profiling activins and follistatin in colorectal cancer according to clinical stage, tumour sidedness and Smad4 status. Pathol Oncol Res 27:1610032

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shih-Yuan LA, Hu YJ, Chu SF (2001) A simple and highly efficient deprotecting method for methoxymethyl and methoxyethoxymethyl ethers and methoxyethoxymethyl esters. Tetrahedron 57:2121–2126

    Article  Google Scholar 

  38. Liu J, Schuff-Werner P, Steiner M (2004) Double transfection improves small interfering RNA-induced thrombin receptor (PAR-1) gene silencing in DU 145 prostate cancer cells. FEBS Lett 577:175–180

    Article  CAS  PubMed  Google Scholar 

  39. Okayama M, Matsumoto T, Kitagawa T, Nakamura S, Ohta T, Yoshida T, Watanabe T (2023) Cytotoxic activities of alkaloid constituents from the climbing stems and rhizomes of Sinomenium acutum against cancer stem cells. J Nat Med 78:226

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 20H03397 and 23KJ2068.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and project administration, TM; methodology, TK, TM, TO, TY, YS, YN, YH, and EA; investigation, formal analysis, and data curation, TK, TM, TO, and TY; resources and software, TM, TY, YS, YN, and TW; writing–original draft preparation and visualization, TK; writing–review and editing, TM, YS, and TW; supervision, T.M. and T.W.; funding acquisition, TK and TM; All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Takahiro Matsumoto or Tetsushi Watanabe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1111 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitagawa, T., Matsumoto, T., Ohta, T. et al. Linderapyrone analogue LPD-01 as a cancer treatment agent by targeting importin7. J Nat Med 78, 370–381 (2024). https://doi.org/10.1007/s11418-023-01774-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11418-023-01774-y

Keywords

Navigation