Skip to main content

Advertisement

Log in

Hydrometeors Distribution in Intense Precipitating Cloud Cells Over the Earth’s During Two Rainfall Seasons

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In the present study, we used attenuated corrected radar reflectivity factor (Ze) and rain-drop size distribution (DSD) to investigate the hydrometeors distribution in the intense precipitating cloud cells (PCCs) from precipitation radar (PR) onboard on Global Precipitation Measurement (GPM). The DSD parameters consist of two variables, namely, mass-weighted mean diameter (Dm) in mm and normalized scaling parameters for hydrometeors concentration (Nw) in mm–1 m–3. We defined two types of PCCs, which are the proxies for the intense rainfall events. First PCC is termed as Cumulonimbus Towers (CbTs), which consist of Ze >  = 20 dBZ at 12 km altitude, and its base height must be less than 3 km altitude. We also defined intense convective clouds (ICCs), which consist of Ze > 30 (40) dBZ at 8 km (3 km), respectively, and are termed as ICC8 and ICC3, respectively. The spatial distribution reveals that continental areas consist of a higher frequency of CbTs and ICC8s compared to oceanic areas, whereas ICC3s are uniformly distributed over tropical land and oceanic areas. The DSD parameters reveal that intense PCCs have larger hydrometeors (Dm), whereas weaker (less Ze) vertical profiles consist of higher concentration (Nw) of smaller hydrometeors (Dm). Land consists of larger hydrometeors (Dm) compared to oceanic areas, and differences are higher in liquid phase regimes compared to mixed phase regimes. The vertical profiles of Ze, Dm and Nw are showing the higher regional differences among the different land-based areas, compared to various tropical ocean basins. Western Himalaya Foothills and Sierra De Cordoba consist of the strongest vertical profiles with the largest Dm on the Earth’s areas during JJAS and DJFM months, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bhat, G. S., & Kumar, S. (2015). Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. Journal of Geophysical Research: Atmospheres, 120, 1710–1722.

    Article  ADS  Google Scholar 

  • Cetrone, J., & Houze Jr, R. A. (2009). Anvil clouds of tropical mesoscale convective systems in monsoon regions. Quarterly Journal of the Royal Meteorological Society: A Journal of the Atmospheric Sciences, Applied Meteorology and Physical Oceanography, 135(639), 305–317.

    Article  ADS  Google Scholar 

  • Das, S., & Maitra, A. (2016). Vertical profile of rain: Ka band radar observations at tropical locations. Journal of Hydrology, 534, 31–41. https://doi.org/10.1016/j.jhydrol.2015.12.053

    Article  ADS  Google Scholar 

  • Del Castillo-Velarde, C., Kumar, S., Valdivia-Prado, J. M., Moya-Álvarez, A. S., Flores-Rojas, J. L., & Villalobos-Puma, E. (2021). Evaluation of GPM dual-frequency precipitation radar algorithms to estimate drop size distribution parameters, using ground-based measurement over the central Andes of Peru. Earth Systems and Environment, 5, 597–619.

    Article  Google Scholar 

  • Dee, D. P., et al. (2011). The ERA-Interim reanalysis: Con"guration and performance of the data assimilation system. Quarterly Journal Royal Meteorological Society, 137, 553–597.

    Article  ADS  Google Scholar 

  • Fabry, F., & Zawadzki, I. (1995). Long-term radar observations of the melting layer of precipitation and their interpretation. Journal of the Atmospheric Sciences, 52, 838–851.

    Article  ADS  Google Scholar 

  • Flores-Rojas, J. L., Cuxart, J., Piñas-Laura, M., Callañaupa, S., Suárez-Salas, L., & Kumar, S. (2019a). Seasonal and diurnal cycles of surface boundary layer and energy balance in the central andes of peru, mantaro valley. Atmosphere, 10(12), 779.

    Article  ADS  Google Scholar 

  • Flores Rojas, J. L., Moya-Alvarez, A. S., Kumar, S., Martínez-Castro, D., Villalobos-Puma, E., & Silva-Vidal, Y. (2019b). Analysis of possible triggering mechanisms of severe thunderstorms in the tropical central Andes of Peru, Mantaro Valley. Atmosphere, 10(6), 301.

    ADS  Google Scholar 

  • Hamada, A., & Takayabu, Y. N. (2016). Improvements in detection of light precipitation with the global precipitation measurement dual-frequency precipitation radar (GPM DPR). Journal of Atmospheric and Oceanic Technology, 33(4), 653–667.

    Article  ADS  Google Scholar 

  • Heymsfield, G. M., Tian, L., Heymsfield, A. J., Li, L., & Guimond, S. (2010). Characteristics of deep tropical and subtropical convection from nadir-viewing high–altitude airborne doppler radar. Journal of the Atmospheric Sciences, 67, 285–308.

    Article  ADS  Google Scholar 

  • Hirose, M., & Nakamura, K. (2005). Spatial and diurnal variation of precipitation systems over Asia observed by the TRMM precipitation radar. Journal of Geophysical Research, 110, D05106. https://doi.org/10.1029/2004JD004815

    Article  ADS  Google Scholar 

  • Hou, A. Y., Kakar, R. K., Neeck, S., Azarbarzin, A. A., Kummerow, C. D., Kojima, M., Oki, R., Nakamura, K., & Iguchi, T. (2014). The global precipitation measurement mission. Bulletin of the American Meteorological Society, 95, 701–722.

    Article  ADS  Google Scholar 

  • Houze, R. A., Jr. (1993). Cloud dynamics. Academic Press.

    Google Scholar 

  • Houze, R. A. (2012). Orographic effects on precipitating clouds. Reviews of Geophysics, 50(RG1001), 47. https://doi.org/10.1029/2011RG000365

    Article  Google Scholar 

  • Houze, R. A., Jr., Wilton, D. C., & Smull, F. B. (2007ba). Monsoon Convection in the Himalayan Region as Seen by the TRMM Precipitation Radar. Quarterly Journal of the Royal Meteorological Society, 133, 1389–1411.

    Article  ADS  Google Scholar 

  • Kalnay, E., et al. (1996). The NCEP/NCAR 40 year reanalysis project. Bulletin of the American Meteorological Society, 77, 437–470.

    Article  ADS  Google Scholar 

  • Kumar, S. (2023). Regional and seasonal differences of radar reflectivity slopes in lower troposphere in convective and stratiform precipitation using TRMM PR data. Theoretical and Applied Climatology, 1–10.

  • Kumar, S., & Bhat, G. S. (2019). Frequency of a state of cloud systems over tropical warm ocean. Environmental Research Communications, 1(6), 061003.

    Article  ADS  Google Scholar 

  • Kumar, S., & Silva, Y. (2019). Vertical characteristics of radar reflectivity and DSD parameters in intense convective clouds Over South East South Asia during Indian summer monsoon. International Journal of Remote Sensing, 40, 9604–9628. https://doi.org/10.1080/01431161.2019.1633705

    Article  ADS  Google Scholar 

  • Kumar, S. (2016). Three dimensional characteristics of precipitating cloud systems observed during Indian summer monsoon. Advances in Space Research, 58(6), 1017–1032. https://doi.org/10.1016/j.asr.2016.05.052

    Article  ADS  Google Scholar 

  • Kumar, S. (2017a). A 10-year climatology of vertical properties of most active convective clouds over the Indian regions using TRMM PR. Theoretical and Applied Climatology, 127(1–2), 429–440. https://doi.org/10.1007/s00704-015-1641-5

    Article  ADS  Google Scholar 

  • Kumar, S. (2017b). Vertical characteristics of reflectivity in intense convective clouds using TRMMPR data. Environment and Natural Resources Research, 7(2), 58. https://doi.org/10.5539/enrr.v7n2p58

    Article  Google Scholar 

  • Kumar, S. (2018). Vertical structure of precipitating shallow echoes observed from TRMM during Indian summer monsoon. Theoretical and Applied Climatology, 133(3–4), 1051–1059. https://doi.org/10.1007/s00704-017-2238-y

    Article  ADS  Google Scholar 

  • Kumar, S., & Bhat, G. S. (2016). Vertical profiles of radar reflectivty factor in intense convective clouds in the tropics. Journal of Applied Meteorology and Climatology, 55(5), 1277–1286. https://doi.org/10.1175/JAMC-D-15-0110.1

    Article  ADS  Google Scholar 

  • Kumar, S., & Bhat, G. S. (2017). Vertical structure of orographic precipitating clouds observed over South Asia during summer monsoon season. Journal of Earth System Science, 126(8), 114. https://doi.org/10.1007/s12040-017-0897-9

    Article  ADS  Google Scholar 

  • Kumar, S., Castillo-Velarde, C. D., Flores Rojas, J. L., Moya-Álvarez, A., Martínez Castro, D., Srivastava, S., & Silva, Y. (2020a). Precipitation structure during various phases the life cycle of precipitating cloud systems using geostationary satellite and space-based precipitation radar over Peru. Giscience & Remote Sensing, 57(8), 1057–1082. https://doi.org/10.1080/15481603.2020.1843846

    Article  Google Scholar 

  • Kumar, S., Castro, C., Moya-Álvarez, A. S., Martínez-Castro, D., & Silva-Vidal, Y. (2020b). Effect of South American low level flow and andes mountain on the tropical and mid latitude precipitating cloud systems: GPM observations. Theoretical and Applied Climatology, 141, 157–172. https://doi.org/10.1007/s00704-020-03155-x

    Article  ADS  Google Scholar 

  • Kumar, S., Castro, C., Valdivia, J. H., Rojas, J. F. L., MagalyCallanaupa, S., Silva-Vidal, Y., Moya-Álvarez, A. S., & Martínez-Castro, D. (2020c). Rainfall characteristics in the Central Andes of Peru from a vertically pointed profile rain radar and in-situ field Campaign. Atmosphere, 11, 248. https://doi.org/10.3390/atmos11030248

    Article  ADS  Google Scholar 

  • Kumar, S., & Silva, Y. (2020). Distribution of hydrometeors in intense convective clouds over South America during austral summer monsoon seasons: GPM observations. International Journal of Remote Sensing, 41, 3677–3707. https://doi.org/10.1080/01431161.2019.1707899

    Article  ADS  Google Scholar 

  • Kumar, S., Flores, J. L., Moya-Álvarez, A. S., Martinez-Castro, D., & Silva, Y. (2023). Characteristics of cloud properties over South America and over Andes observed using CloudSat and reanalysis data. International Journal of Remote Sensing, 44(6), 1976–2004.

    Article  ADS  Google Scholar 

  • Kumar, S., Silva-Vidal, Y., Moya-Álvarez, A. S., & Martínez-Castro, D. (2019a). Effect of the surface wind flow and topography on precipitating cloud systems over the andes and associated Amazon Basin: GPM observations. Atmospheric Research, 225, 193–208. https://doi.org/10.1016/j.atmosres.2019.03.027

    Article  ADS  Google Scholar 

  • Kumar, S., Silva-Vidal, Y., Moya-Álvarez, A. S., & Martínez-Castro, D. (2019b). Seasonal and regional differences in extreme rainfall events and their contribution to the world’s precipitation: GPM observations: GPM observations. Advances in Meteorology, 2019, 1–15. https://doi.org/10.1155/2019/4631609

    Article  CAS  Google Scholar 

  • Kumar, S., & Srivastava, S. (2022). A vertical characteristics of precipitating cloud systems during different phases of life cycle of cloud systems using satellite-based radar over tropical Oceanic areas. Journal of Applied and Natural Science, 14(4), 1272–1285. https://doi.org/10.31018/jans.v14i4.3691

    Article  Google Scholar 

  • Lasher-Trapp, S., Kumar, S., Moser, D. H., Blyth, A. M., French, J. R., Jackson, R. C., Leon, D. C., & Plummer, D. M. (2018). On different microphysical pathways to convective rainfall. Journal of Applied Meteorology and Climatology, 57(10), 2399–2417. https://doi.org/10.1175/JAMC-D-18-0041.1

    Article  ADS  Google Scholar 

  • Lavanya S., Kirankumar, N. V. P., Aneesh, S., Subrahmanyam, K. V., & Sijikumar, S. (2019). Seasonal variation of raindrop size distribution over a coastal station Thumba: A quantitative analysis. Atmospheric Research. https://doi.org/10.1016/j.atmosres.2019.06.004

  • Li, W., & Schumacher, C. (2011). Thick anvils as viewed by the TRMM precipitation radar. Journal of Climate, 24, 1718–1735.

    Article  ADS  Google Scholar 

  • Liu, C., & Zipser, E. J. (2015). The global distribution of largest, deepest, and most intense precipitation systems. Geophysical Research Letters, 42(9), 3591–3595.

    Article  ADS  Google Scholar 

  • Liu, C., Zipser, E. J., Cecil, D. J., Nesbitt, S. W., & Sherwood, S. (2008). A cloud and precipitation feature database from nine years of TRMM observations. Journal of Applied Meteorology and Climatology, 47(10), 2712–2728. https://doi.org/10.1175/2008JAMC1890.1

    Article  ADS  Google Scholar 

  • Lucas, C., Zipser, E. J., & LeMone, M. A. (1994ba). Vertical velocity in oceanic convection off tropical Australia. Journal of Atmospheric Science, 51, 3183–3193.

    Article  ADS  Google Scholar 

  • Medina, S., Houze, R. A., Jr., Kumar, A., & Niyogi, D. (2010). Summer monsoon convection in the Himalayan region: Terrain and land cover effects. Quarterly Journal of the Royal Meteorological Society, 136, 593–616.

    Article  ADS  Google Scholar 

  • Nesbitt, S. W., Cifelli, R., & Rutledge, S. A. (2006). Storm morphology and rainfall characteristics of TRMM precipitation features. Monthly Weather Review, 134, 2702–2721.

    Article  ADS  Google Scholar 

  • Nesbitt, S. W., Zipser, E. J., & Cecil, D. J. (2000). A census of precipitation features in the tropics using TRMM radar, ice scattering, and lightning observations. Journal of Climate, 13, 4087–4106.

    Article  ADS  Google Scholar 

  • Petersen, W. A., & Rutledge, S. A. (2001). Regional variability in tropical convection: Observation from TRMM. Journal of Climate, 13, 4087–4106.

    Google Scholar 

  • Qie, X. S., Wu, X. K., Yuan, T., Bian, J. C., & Lu, D. R. (2014). Comprehensive pattern of deep convective systems over the Tibetan Plateau-South Asian monsoon region based on TRMM data. Journal of Climate, 27, 6612–6626. https://doi.org/10.1175/JCLI-D-14-00076.1

    Article  ADS  Google Scholar 

  • Riehl, H., & Malkus, J. S. (1958). On the heat balance in the equatorial trough zone. Geophysica, 6, 503–538.

    Google Scholar 

  • Romatschke, U., Medina, S., & Houze, R. A., Jr. (2010). Regional, seasonal, and diurnal variations of extreme convection in South Asian region. Journal of Climate, 23, 419–439.

    Article  ADS  Google Scholar 

  • Sherwood, S. C., Minnis, P., & McGill, M. (2004). Deep convective cloud-top heights and their thermodynamic control during crystal-face. Journal of Geophysical Research: Atmospheres. https://doi.org/10.1029/2004JD004811

    Article  Google Scholar 

  • Stith, J. L., Dye, J. E., Bansemer, A., Heymsfield, A. J., Grainger, C. A., Petersen, W. A., & Cifelli, R. (2002). Microphysical observations of tropical clouds. Journal of Applied Meteorology, 41, 97–117.

    Article  ADS  Google Scholar 

  • Takayabu, Y. N. (2002). Spectral representation of rain profille and diurnal variations observed with TRMM PR over the equatorial area. Geophysical Research Letters, 29(12), 1584. https://doi.org/10.1029/2001GL014113

    Article  ADS  Google Scholar 

  • Williams, E. R., Weber, M. E., & Orville, R. E. (1989). The relationship between lightning type and convective state of thunderclouds. Journal of Geophysical Research, 94, 13213–13220.

    Article  ADS  Google Scholar 

  • Wu, X., Qie, X., & Yuan, T. (2013). Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region. Science China Earth Sciences, 56, 843–854.

    Article  ADS  Google Scholar 

  • Wu, X., Qie, X., Yuan, T., & Li, J. (2016). Meteorological regimes of the most intense convective systems along the southern Himalayan front. Journal of Climate, 29(12), 4383–4398.

    Article  ADS  Google Scholar 

  • Wu, X., Yuan, T., Qie, K., & Luo, J. (2020). Geographical distribution of extreme deep and intense convective storms on Earth. Atmospheric Research, 235, 104789.

    Article  Google Scholar 

  • Xu, W., & Zipser, E. J. (2012). Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophysical Research Letters, 39, L07802.

    Article  ADS  Google Scholar 

  • Yuan, T., & Qie, X. (2008). Study on lightning activity and precipitation characteristics before and after the onset of the South China sea summer monsoon. Journal of Geophysical Research, 113, D14101.

    Article  ADS  Google Scholar 

  • Yuter, S. E., & Houze, R. A., Jr. (1995). Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus: Part II. Frequency distribution of vertical velocity, reflectivity, and the differential reflectivity. Monthly Weather Review, 123, 1941–1963.

    Article  ADS  Google Scholar 

  • Zipser, E. J. (2003). Some views on “hot towers” after 50 years of tropical field programs and two years of TRMM data. In: W. K. Tao, & R. Adler (Eds.), Cloud systems, hurricanes, and the tropical rainfall measuring mission (TRMM). Meteorological Monographs (Vol. 51, pp. 49–58). Boston, MA: American Meteorological Society.

  • Zipser, E. J., Cecil, D. J., Liu, C., Nesbitt, S. W., & Yorty, D. P. (2006). Where are the most intense thunderstorms on earth? Bulletin of the American Meteorological Society, 87, 1057–1071.

    Article  ADS  Google Scholar 

  • Zipser, E. J., & Lutz, K. R. (1994). The vertical profile of radar reflectivity of convective cells: A strong indicator of storm intensity and lightning probability? Monthly Weather Review, 122, 1751–1759.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

GPM Data (GES DISC DATASET: GPM DPR KU PRECIPITATION PROFILE 2A 1.5 HOURS 5 KM V07 (GPM_2AKU 07) (NASA.GOV)) and 3B42 (http://mirador.gsfc.nasa.gov/cgi-bin/ mirador/presentNavigation.pl?tree=project&dataset= 3B42:%203-Hour%200.25%20x%200.25%20degree% 20merged%20TRMM%20and%20other%20satellite% 20estimates&project=TRMM&dataGroup=Gridded& version=007) data are taken from NASA’s Earth–Sun System Division website. The authors thank the anonymous reviewers for their constructive suggestions. TMI data were produced by Remote Sensing Systems, Inc., and were sponsored by the NASA Earth Sciences Division.

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Contributions

SK helped in conceptualization, validation, methodology, data analysis, radar data concept, algorithm development and wrote the original draft; JLF was involved in data collection and edited the original draft; DM helped in concept and edited the manuscript; ASM edited the manuscript; YSV edited the manuscript. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shailendra Kumar.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Flores‑Rojas, J.L., Moya-Álvarez, A.S. et al. Hydrometeors Distribution in Intense Precipitating Cloud Cells Over the Earth’s During Two Rainfall Seasons. J Indian Soc Remote Sens 52, 95–111 (2024). https://doi.org/10.1007/s12524-023-01805-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-023-01805-x

Keywords

Navigation