Skip to main content
Log in

Experimental Study to Improve the Hydrodynamic and Thermal Efficiencies of a Cross-Flow Car Radiator Using a New Prepared Hybrid Nanofluid Composed of Graphene Oxide and Silicon Oxide Nanoparticles Dispersed in Water–Ethylene Glycol Fluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The utilization of nanofluids has found numerous applications in various industries, including transportation, electronics, and energy. By substituting conventional fluids with nanofluids, heat transfer rates can increase. This not only enhances engine efficiency, leading to decreased fuel consumption but also enables the design of more powerful engines adaptable to various climates. This study focuses on a hybrid nanofluid composed of graphene oxide and silicon oxide nanoparticles in a water-ethylene glycol base fluid, which can have an application in car radiators. Experiments, validated with distilled water, explored various volume fractions (0.1 % to 1.0 %) and coolant flow rates (3 to 7 l/min). Results showed that increasing flow rates improved heat transfer, displacement heat transfer coefficient (HTC), and Nusselt number. Similarly, higher nanoparticle fractions enhanced heat transfer and HTC with minimal pressure drop. The radiator's thermal performance significantly improved with nanofluid use, but a reduction in HTC relative to pumping power was noted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

The data and material are available and can be presented in the case of needed.

References

  1. S.U.S. Choi, W. Yu, J.R. Hull, Z.G. Zhang, F.E. Lockwood, S.A.E. Int, J. Passeng. Cars Mech. Syst. 111, 38–43 (2002)

    Google Scholar 

  2. S.C. Tzeng, C.W. Lin, K.D. Huang, Acta Mech. 179, 11–23 (2005)

    Article  Google Scholar 

  3. K.R. Aglawe, R.K. Yadav, S.B. Thool, Mater. Today: Proc. 43, 366–372 (2021)

    Google Scholar 

  4. J. Sarkar, Renew. Sust. Energ. Rev. 15, 3271–3277 (2011)

    Article  CAS  Google Scholar 

  5. V. Sridhara, B.S. Gowrishankar, Snehalatha, L.N. Satapathy, Trans. Indian Ceram. Soc. 68, 1–17 (2009)

  6. K.J. Park, D. Jung, Energy Build. 39, 1061–1064 (2007)

    Article  Google Scholar 

  7. G. Yıldız, Ü. Ağbulut, A.E. Gürel, Int. J. Refrig. 129, 342–364 (2021)

    Article  Google Scholar 

  8. V. Trisaksri, S. Wongwises, Int. J. Heat Mass Transf. 52, 1582–1588 (2009)

    Article  CAS  Google Scholar 

  9. G. Ding, H. Peng, W. Jiang, Y. Gao, Int. J. Refrig. 32, 114–123 (2009)

    Article  CAS  Google Scholar 

  10. A. Bhattad, J. Sarkar, P. Ghosh, Renew. Sust. Energ. Rev. 82, 3656–3669 (2018)

    Article  CAS  Google Scholar 

  11. R. Saidur, S.N. Kazi, M.S. Hossain, M.M. Rahman, H.A. Mohammed, Renew. Sust. Energ. Rev. 15, 310–323 (2011)

    Article  CAS  Google Scholar 

  12. K. Emmenthal, W. Hucho, SAE Technical Paper 740088 (1974) https://doi.org/10.4271/740088

  13. J.P. Chiou, SAE Int. 89, 222–230 (1980)

    Google Scholar 

  14. M. Gollin, D. Bjork, SAE Technical Paper 960372 (1996) https://doi.org/10.4271/960372

  15. S.C. Morris, J.J. Good, J.F. Foss, Exp. Therm. Fluid Sci. 17, 100–106 (1998)

    Article  Google Scholar 

  16. J.J. JuGer, R.F. Crook, S.A.E. Int, J. Engines 108, 71–81 (1999)

    Google Scholar 

  17. J.A. Chen, D.F. Wang, L.Z. Zheng, Proc. Inst. Mech. Eng. D 215, 911–918 (2001)

    Article  Google Scholar 

  18. E. Carluccio, G. Starace, A. Ficarella, D. Laforgia, Appl. Therm. Eng. 25, 1995–2013 (2005)

    Article  Google Scholar 

  19. A. Witry, M.H. Al-Hajeri, A.A. Bondok, Appl. Therm. Eng. 25, 1207–1218 (2005)

    Article  CAS  Google Scholar 

  20. J.L. Routbort, D. Singh, G. Chen, Heavy vehicle systems optimization merit review and peer evaluation. (Argonne National Laboratory USA, 2007), https://www.energy.gov/eere/analysis/articles/heavy-vehicle-systems-optimization-peer-review

  21. E. Çiftçi, Int. J. Thermophys. 42, 38 (2021)

    Article  ADS  Google Scholar 

  22. K. Martin, A. Sözen, E. Çiftçi, H.M. Ali, Int. J. Thermophys. 41, 1–21 (2020)

    Article  Google Scholar 

  23. A. Karimipour, O. Malekahmadi, A. Karimipour, M. Shahgholi, Z. Li, Int. J. Thermophys. 41, 116 (2020)

    Article  ADS  CAS  Google Scholar 

  24. A. Vărdaru, G. Huminic, A. Huminic, C. Fleacă, F. Dumitrache, I. Morjan, Alex. Eng. J. 61, 12111–12122 (2022)

    Article  Google Scholar 

  25. A.A. Mahyari, A. Karimipour, M. Afrand, Physica A 521, 98–112 (2019)

    Article  ADS  CAS  Google Scholar 

  26. F.M. White, Fluid Mechanics, 7th edn. (Mcgraw-Hill series in mechanical engineering, 2011)

  27. K.D. Hagen, Heat Transfer with Applications, 1st edn. (Prentice Hall, Hoboken, 1998)

    Google Scholar 

  28. A. Bejan, Convection Heat Transfer, 4th edn. (Wiley, New York, 2013)

    Book  Google Scholar 

  29. H.W. Coleman, W.G. Steele, Experimentation, Validation, and Uncertainty Analysis for Engineers, 3rd edn. (Wiley, New York, 2018)

    Book  Google Scholar 

  30. S.S. Murshed, K.C. Leong, C. Yang, N.T. Nguyen, Int. J. Nanosci. 7, 325–331 (2008)

    Article  CAS  Google Scholar 

  31. T.L. Bergman, A.S. Lavine, F.P., Incropera, D.P. DeWitt, Introduction to Heat Transfer, 6th edn. (Wiley, New York, 2011)

  32. F.W. Dittus, Univ. Cal. Pub. Eng. 2, 443–461 (1930)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the main manuscript text and they all prepared the figures; and all authors reviewed the manuscript.

Corresponding author

Correspondence to Arash Karimipour.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rashidi, O., Sajadi, S.M., Soufivand, M. et al. Experimental Study to Improve the Hydrodynamic and Thermal Efficiencies of a Cross-Flow Car Radiator Using a New Prepared Hybrid Nanofluid Composed of Graphene Oxide and Silicon Oxide Nanoparticles Dispersed in Water–Ethylene Glycol Fluid. Int J Thermophys 45, 23 (2024). https://doi.org/10.1007/s10765-023-03310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-023-03310-2

Keywords

Navigation