Skip to main content

Advertisement

Log in

Polymer nanoparticles of [(1-methyl-(S)-4,5-dihydroorotyl)-histidyl-prolinamide] as a potential central nervous system antidepressant formulation and their scale-up studies

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In the present study, we explored the potential of [(1-methyl-(S)-4,5-dihydroorotyl)-histidyl-prolinamide] (TA0910) as an antidepressant agent to be delivered through the nasal route. For this, the active agent was formulated in the form of nanoparticles of a biodegradable polymer poly (sebacic anhydride). The polymer was synthesized through melt condensation method and was characterized through FTIR, H1 NMR, and size exclusion chromatography. The antisolvent precipitation method was employed to prepare drug-loaded poly (sebacic anhydride) nanoparticles. This polymer was selected because its nanoparticles are readily taken up by olfactory and trigeminal nerves due to hydrophobic nature of the polymer and then it shows smooth degradation and hydrolytic erosion from surface which is the requirement of short-term drug release in the olfactory region. The influence of formulation and process parameters on particle size was investigated using dynamic light scattering. Nanoparticle morphology was studied through SEM. Drug-loaded polymeric nanoparticles so formed were separated using a novel method. Drug encapsulation efficiency of nanoparticles was determined using HPLC. Cell line experiments were done to determine the potential cytotoxicity of nanoparticles. The nanoparticle product developed had a mean particle size in the range of 300 to 800 nm. In vitro, drug release studies showed an immediate release of TA0910 from the nanoparticles. Stability study of both lab-scale (6 months), as well as scale-up batch (18 months), showed that the product was stable under frozen conditions (− 20 ºC) in terms of drug content, but particle size increased on stability and percentage of drug release increased during initial time points of the release curve. The formulation described can be used and scaled up successfully at the production level to make a viable commercial product.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV (1969) The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl-histidyl-proline amide. Biochem Biophys Res Commun 37:705–710

    Article  CAS  PubMed  Google Scholar 

  2. Nair RMG, Barrett JF, Bowers CY, Schally AV (1970) Structure of porcine thyrotropin-releasing hormone. Biochemistry 9:1103–1106

    Article  CAS  PubMed  Google Scholar 

  3. Burgus R, Dunn TF, Desiderio D, Ward DN, Vale W, Guillemin R (1970) Characterization of ovine hypothalamic hypophysiotropic TSH-releasing factor. Nature 226:321–325

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Vale W, Rivier CA, Brown M (1977) Regulatory peptides of the hypothalamus. Annu Rev Physiol 39:473–527

    Article  CAS  PubMed  Google Scholar 

  5. Loosen PT (1986) Hormones of the hypothalamic-pituitary-thyroid axis: a psychoneuroendocrine perspective. Pharmacopsychiatry 19:401–415

    Article  CAS  PubMed  Google Scholar 

  6. Joffe RT (2011) Hormone treatment of depression. Dialogues Clin Neurosci 13:127–138

    Article  PubMed  PubMed Central  Google Scholar 

  7. Yadav D, Kumar N (2014) Nanonization of curcumin by antisolvent precipitation: Process development, characterization, freeze drying and stability performance. Int J Pharm 477:564–577

    Article  CAS  PubMed  Google Scholar 

  8. Li S, Qin T, Chen T, Wang J, Zeng Q (2021) Poly(vinyl alcohol)/poly(hydroxypropyl methacrylate-co-methacrylic acid) as pH-sensitive semi-IPN hydrogels for oral insulin delivery: preparation and characterization. Iran Polym J 30:343–353

    Article  CAS  Google Scholar 

  9. Gagliardi M, Ashizawa AT (2021) The challenges and strategies of antisense oligonucleotide drug delivery. Biomedicines 9:433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sharma N, Singh S, Behl T, Gupta N, Gulia R, Kanojia N (2022) Explicating the applications of quality by design tools in optimization of microparticles and nanotechnology based drug delivery systems. Biointerface Res Appl Chem 12:4317–4336

    CAS  Google Scholar 

  11. Yadav D, Survase S, Kumar N (2011) Dual coating of swellable and rupturable polymers on Glipizide loaded MCC pellets for pulsatile delivery: formulation design and in vitro evaluation. Int J Pharm 419:121–130

    Article  CAS  PubMed  Google Scholar 

  12. Yadav K, Yadav D, Srivastava AK (2013) Evaluation of hydrophilic, hydrophobic and waxy matrix excipients for sustained release tablets of Venlafaxine hydrochloride. Drug Dev Ind Pharm 39:1197–1206

    Article  CAS  PubMed  Google Scholar 

  13. Yalçın D, Top A (2022) Novel biopolymer-based hydrogels obtained through crosslinking of keratose proteins using tetrakis(hydroxymethyl) phosphonium chloride. Iran Polym J 31:1057–1067

    Article  Google Scholar 

  14. Kaur M, Sharma A, Puri V, Aggarwal G, Maman P, Huanbutta K, Nagpal M, Sangnim T (2023) Chitosan-based polymer blends for drug delivery systems. Polymers 15:2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yadav K, Yadav D, Yadav M, Sunil K (2015) Noscapine-loaded PLA nanoparticles: systematic study of effect of formulation and process variables on particle size, drug loading and entrapment efficiency. Pharma Nanotechnol 3:134–147

    Article  CAS  Google Scholar 

  16. Anbarasan R, Murugesan A, Meenarathi B (2022) 5-Fluorouracil-loaded drug release activity of poly(ε-caprolactone) prepared in presence of MnO2/dye catalytic initiating systems. Iran Polym J 31:1447–1458

    Article  CAS  Google Scholar 

  17. Dhuria SV, Hanson LR, Frey WH (2010) Intranasal delivery to the central nervous system: Mechanisms and experimental considerations. J Pharm Sci 99:1654–1673

    Article  CAS  PubMed  Google Scholar 

  18. Alabsi W, Eedara BB, Encinas-Basurto D, Polt R, Mansour HM (2022) Nose-to-brain delivery of therapeutic peptides as nasal aerosols. Pharmaceutics 14:1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tamada J, Langer R (1992) The development of polyanhydrides for drug delivery applications. J Biomater Sci Polym Ed 3:315–353

    Article  CAS  PubMed  Google Scholar 

  20. Mathiowitz E, Langer R (1987) Polyanhydride microspheres as drug carriers. I: hot-melt microencapsulation. J Control Release 5:13–22

    Article  CAS  Google Scholar 

  21. Leong KW, Brott BC, Langer R (1985) Bioerodible polyanhydrides as drug-carrier matrices. I: Characterization, degradation, and release characteristics. J Biomed Mater Res 19:941–955

    Article  CAS  PubMed  Google Scholar 

  22. Leong KW, D’amore PD, Marletta M, Langer R (1986) Bioerodible polyanhydrides as drug-carrier matrices. II. Biocompatibility and chemical reactivity. J Biomed Mater Res 20:51–64

    Article  CAS  PubMed  Google Scholar 

  23. Göpferich A (1996) Mechanisms of polymer degradation and erosion. Biomaterials 17:103–114

    Article  PubMed  Google Scholar 

  24. Ramesh M, Rangappa SM, Parameswaranpillai J, Siengchin S (2022) In: Biodegradable Polymers. Elsevier, Blends and Composites

    Google Scholar 

  25. Göpferich A, Tessmar J (2002) Polyanhydride degradation and erosion. Adv Drug Deliv Rev 54:911–931

    Article  PubMed  Google Scholar 

  26. Kesharwani P, Prajapati SK, Jain A, Mody N, Sharma S (2022) Polymeric Biomaterials for Healthcare Applications. Elsevier, UK

    Google Scholar 

  27. Hill JW, Carothers WH (1932) Studies of polymerization and ring formation. XIV: A linear superpolyanhydride and a cyclic dimeric anhydride from sebacic acid. J Am Chem Soc 54:1569–1579

    Article  CAS  Google Scholar 

  28. Prasad RBN, Rao BVSK (2017) Chemical Derivatization of Castor Oil and Their Industrial Utilization. In: Ahmad MU (ed) Fatty Acids. AOCS Press, pp 279–303. https://doi.org/10.1016/B978-0-12-809521-8.00008-8 (ISBN: 9780128095218)

    Chapter  Google Scholar 

  29. Pavelkova A, Kucharczyk P, Zednik J, Sedlarik V (2014) Synthesis of poly(sebacic anhydride): effect of various catalysts on structure and thermal properties. J Polym Res 21:426

    Article  Google Scholar 

  30. Parente JF, Sousa VI, Marques JF, Forte MA, Tavares CJ (2022) Biodegradable polymers for microencapsulation systems. Adv Poly Technol 2022:1–43

    Article  Google Scholar 

  31. Sabir MI, Xu X, Li L (2009) A review on biodegradable polymeric materials for bone tissue engineering applications. J Mater Sci 44:5713–5724

    Article  ADS  CAS  Google Scholar 

  32. Horimoto S, Mayumi T, Tagawa K, Yamakita H, Yoshikawa M (2002) Determination of taltirelin, a new stable thyrotropin-releasing hormone analogue, in human plasma by high-performance liquid chromatography turbo-ionspray ionization tandem mass spectrometry. J Pharm Biomed Anal 30:1361–1369

    Article  CAS  PubMed  Google Scholar 

  33. Ambrosio L, Sanchez Terrero C, Prado MO, Parodi L, Zarlenga AC, Cardoso Cúneo J (2023) Anti-tumoral effect of doxorubicin-loaded poly(vinyl alcohol)/poly(vinyl acetate) microspheres in a rat model. Iran Polym J 32:287–297

    Article  CAS  Google Scholar 

  34. Mehmood S, Uddin MA, Yu H, Wang L, Amin BU, Haq F, Fahad S, Haroon M (2022) Preparation of size-controlled poly(cyclotriphosphazene-co-resveratrol) microspheres and their properties as drug delivery carriers. Iran Polym J 31:1225–1235

    Article  CAS  Google Scholar 

  35. Karp F, Mengatto LN, Satler FS, Turino LN, Estenoz DA, Luna JA (2023) Antibiotic delivery based on poly(lactic-co-glycolic) acid and natural polymers: a biocomposite strategy. Iran Polym J 32:299–312

    Article  CAS  Google Scholar 

  36. Higuchi T (1963) Mechanism of sustained-action medication. theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J Pharm Sci 52:1145–1149

    Article  CAS  PubMed  Google Scholar 

  37. Hixson A, Crowell J (1931) Dependence of reaction velocity upon surface and agitation. Ind Eng Chem 23:923–931

    Article  CAS  Google Scholar 

  38. Adler AF, Petersen LK, Wilson JH, Torres MP, Thorstenson JB, Gardner SW, Mallapragada SK, Wannemuehler MJ, Narasimhan B (2009) High throughput cell-based screening of biodegradable polyanhydride libraries. Comb Chem High Throughput Screen 12:634–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ponnurangam S (2012) Tailoring the (bio)activity of polymeric and metal oxide nano- and microparticles in biotic and abiotic environments. Graduate School of Arts and Science Doctor of Philosophy. https://academiccommons.columbia.edu/doi/10.7916/D8N87HVR

  40. Almaguel FG, Liu JW, Pacheco FJ, Casiano CA, De Leon M (2009) Activation and reversal of lipotoxicity in PC12 and rat cortical cells following exposure to palmitic acid. J Neurosci Res 87:1207–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Riasat I, Naeem M, Khan MUA, Jamal SB, AaK Khalil, Haider S, Haider A (2022) Essentials of Industrial Pharmacy. Springer, Cham

    Google Scholar 

  42. Liang Y, Xiao L, Zhai Y, Xie C, Deng L, Dong A (2013) Preparation and characterization of biodegradable poly(sebacic anhydride) chain extended by glycol as drug carrier. J Appl Polym Sci 127:3948–3953

    Article  CAS  Google Scholar 

  43. Bagherifam S, Skjeldal FM, Griffiths G, Mælandsmo GM, Engebråten O, Nyström B, Hasirci V, Hasirci N (2015) pH-Responsive nano carriers for doxorubicin delivery. Pharm Res 32:1249–1263

    Article  CAS  PubMed  Google Scholar 

  44. Ajithkumar MP, Yashoda MP, Prasannakumar S (2014) Synthesis, characterization, microstructure determination and thermal studies of poly(N-vinyl-2-pyrrolidone-maleic anhydride-styrene) terpolymer. Iran Polym J 23:93–101

    Article  CAS  Google Scholar 

  45. Feng L, Yang Z, Liu Y, Hao J, Xiong C, Deng X (2014) Copolymerization of succinic anhydride and epoxide with diethylene glycol side chain. Iran Polym J 23:217–226

    Article  CAS  Google Scholar 

  46. Godinho B, Nogueira R, Gama N, Ferreira A (2023) Synthesis of prepolymers of poly(glycerol-co-diacids) based on sebacic and succinic acid mixtures. ACS Omega 8:16194–16205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Saikia C, Hussain A, Ramteke A, Sharma HK, Deb P, Maji TK (2015) Carboxymethyl starch-coated iron oxide magnetic nanoparticles: a potential drug delivery system for isoniazid. Iran Polym J 24:815–828

    Article  CAS  Google Scholar 

  48. Chacon WDC, Verruck S, Monteiro AR, Valencia GA (2023) The mechanism, biopolymers and active compounds for the production of nanoparticles by anti-solvent precipitation: a review. Food Res Int 2023:112728

    Article  Google Scholar 

  49. Zheng H, Wang J, Zhang Y, Xv Q, Zeng Q, Wang J (2022) Preparation and characterization of carvacrol-loaded caseinate/zein-composite nanoparticles using the anti-solvent precipitation method. Nanomaterials 12:2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wu CY, Wang W (2022) Application of antisolvent precipitation method for formulating excipient-free nanoparticles of psychotropic drugs. Pharmaceutics 14:819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hassanzadeh F, Maaleki S, Varshosaz J, Khodarahmi GA, Farzan M, Rostami M (2016) Thermosensitive folic acid-targeted poly (ethylene-co-vinyl alcohol) hemisuccinate polymeric nanoparticles for delivery of epirubicin to breast cancer cells. Iran Polym J 25:967–976

    Article  CAS  Google Scholar 

  52. Raj V, Priya P, Renji R, Suryamathi M, Kalaivani S (2018) Folic acid-egg white coated IPN network of carboxymethyl cellulose and egg white nanoparticles for treating breast cancer. Iran Polym J 27:721–731

    Article  CAS  Google Scholar 

  53. Kala SG, Chinni S (2022) Synthesis, characterization and comparison of novel poly (sebacic anhydride) biopolymeric implants and microspheres for the controlled release of an anticancer. Drug Ind J Pharm Edu Res 56:429–437

    Article  CAS  Google Scholar 

  54. Totiger SB, Hiremath JG (2011) Paclitaxel loaded poly (sebacic acid-co-ricinoleic ester anhydride)-based nanoparticles. Asian J Pharma 5:225–230

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Yadav.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Kashyap, K., Atwal, K. et al. Polymer nanoparticles of [(1-methyl-(S)-4,5-dihydroorotyl)-histidyl-prolinamide] as a potential central nervous system antidepressant formulation and their scale-up studies. Iran Polym J 33, 531–542 (2024). https://doi.org/10.1007/s13726-023-01271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-023-01271-9

Keywords

Navigation