Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Augmenting insect olfaction performance through nano-neuromodulation

Abstract

Biological olfactory systems are highly sensitive and selective, often outperforming engineered chemical sensors in highly complex and dynamic environments. As a result, there is much interest in using biological systems to build sensors. However, approaches to read-out information from biological systems, especially neural signals, tend to be suboptimal due to the number of electrodes that can be used and where these can be placed. Here we aim to overcome this suboptimality in neural information read-out by using a nano-enabled neuromodulation strategy to augment insect olfaction-based chemical sensors. By harnessing the photothermal properties of nanostructures and releasing a select neuromodulator on demand, we show that the odour-evoked response from the interrogated regions of the insect olfactory system can not only be enhanced but can also improve odour identification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neuromodulation strategy for augmenting insect olfaction.
Fig. 2: Synthesis and characterization of photothermal NPs.
Fig. 3: Augmentation of locust olfaction via nanomaterial-assisted photothermal neuromodulation.
Fig. 4: Cargo loading and triggered release kinetics of nanovehicles.
Fig. 5: Effect of chemical neuromodulation on locust olfaction.
Fig. 6: Augmenting locust olfaction via nano-enabled synergistic photothermal/chemical neuromodulation.

Similar content being viewed by others

Data availability

The main data supporting the results in this study are available within the paper and the Supplementary Information. All data generated in this study are available from figshare via the identifier https://doi.org/10.6084/m9.figshare.24582537.

Code availability

The codes used for data analyses are available from figshare via the identifier https://doi.org/10.6084/m9.figshare.24582537.

References

  1. Peng, G. et al. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 4, 669–673 (2009).

    Article  CAS  Google Scholar 

  2. Strauch, M. et al. More than apples and oranges—detecting cancer with a fruit fly’s antenna. Sci. Rep. 4, 3576 (2014).

    Article  CAS  Google Scholar 

  3. Raman, B., Meier, D. C., Evju, J. K. & Semancik, S. Designing and optimizing microsensor arrays for recognizing chemical hazards in complex environments. Sens. Actuators B 137, 617–629 (2009).

    Article  CAS  Google Scholar 

  4. Dunn, M. & Degenhardt, L. The use of drug detection dogs in Sydney, Australia. Drug Alcohol Rev. 28, 658–662 (2009).

    Article  Google Scholar 

  5. Nagle, H. T., Gutierrez-Osuna, R., Kermani, B. G. & Schiffman, S. S. in Handbook of Machine Olfaction: Electronic Nose Technology (eds Pearce, T. et al.) chap. 17, 419–444 (Wiley Online Library, 2002).

  6. Brattoli, M. et al. Odour detection methods: olfactometry and chemical sensors. Sensors (Basel) 11, 5290–5322 (2011).

    Article  CAS  Google Scholar 

  7. Terutsuki, D. et al. Real-time odor concentration and direction recognition for efficient odor source localization using a small bio-hybrid drone. Sens. Actuators B 339, 129770 (2021).

    Article  CAS  Google Scholar 

  8. Saha, D. et al. Explosive sensing with insect-based biorobots. Biosens. Bioelectron. X 6, 100050 (2020).

    CAS  Google Scholar 

  9. Ma, S., Li, B. & Li, Y. The steering jump control of a locust bio-robot via asynchronous hindleg kickings. Adv. Intell. Syst. 4, 2200082 (2022).

    Article  Google Scholar 

  10. Le, D. L. et al. Neurotransmitter-loaded nanocapsule triggers on-demand muscle relaxation in living organism. ACS Appl. Mater. Interfaces 10, 37812–37819 (2018).

    Article  CAS  Google Scholar 

  11. Lorig, T. S. On the similarity of odor and language perception. Neurosci. Biobehav. Rev. 23, 391–398 (1999).

    Article  CAS  Google Scholar 

  12. Saha, D. et al. A spatiotemporal coding mechanism for background-invariant odor recognition. Nat. Neurosci. 16, 1830–1839 (2013).

    Article  CAS  Google Scholar 

  13. Saha, D. et al. Engaging and disengaging recurrent inhibition coincides with sensing and unsensing of a sensory stimulus. Nat. Commun. 8, 15413 (2017).

    Article  CAS  Google Scholar 

  14. Lizbinski, K. M. & Dacks, A. M. Intrinsic and extrinsic neuromodulation of olfactory processing. Front. Cell. Neurosci. 11, 424 (2018).

    Article  Google Scholar 

  15. Wang, Y. & Guo, L. Nanomaterial-enabled neural stimulation. Front. Neurosci. 10, 69 (2016).

    Article  Google Scholar 

  16. Acarón Ledesma, H. et al. An atlas of nano-enabled neural interfaces. Nat. Nanotechnol. 14, 645–657 (2019).

    Article  Google Scholar 

  17. Benfenati, F. & Lanzani, G. Clinical translation of nanoparticles for neural stimulation. Nat. Rev. Mater. 6, 1–4 (2021).

    Article  Google Scholar 

  18. Zhang, Y. et al. Transcranial nongenetic neuromodulation via bioinspired vesicle-enabled precise NIR-II optical stimulation. Adv. Mater. https://doi.org/10.1002/adma.202208601 (2022).

  19. Garcia-Etxarri, A. & Yuste, R. Time for nanoneuro. Nat. Methods 18, 1287–1293 (2021).

    Article  CAS  Google Scholar 

  20. Yoo, S., Park, J.-H. & Nam, Y. Single-cell photothermal neuromodulation for functional mapping of neural networks. ACS Nano 13, 544–551 (2018).

    Article  Google Scholar 

  21. Rastogi, S. K. et al. Remote nongenetic optical modulation of neuronal activity using fuzzy graphene. Proc. Natl Acad. Sci. USA 117, 13339 (2020).

    Article  CAS  Google Scholar 

  22. Yoo, S., Hong, S., Choi, Y., Park, J.-H. & Nam, Y. Photothermal inhibition of neural activity with near-infrared-sensitive nanotransducers. ACS Nano 8, 8040–8049 (2014).

    Article  CAS  Google Scholar 

  23. Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    Article  CAS  Google Scholar 

  24. Kang, H., Lee, G.-H., Jung, H., Lee, J. W. & Nam, Y. Inkjet-printed biofunctional thermo-plasmonic interfaces for patterned neuromodulation. ACS Nano 12, 1128–1138 (2018).

    Article  CAS  Google Scholar 

  25. Lee, J. W., Jung, H., Cho, H. H., Lee, J. H. & Nam, Y. Gold nanostar-mediated neural activity control using plasmonic photothermal effects. Biomaterials 153, 59–69 (2018).

    Article  CAS  Google Scholar 

  26. Eom, K. et al. Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods. Small 10, 3853–3857 (2014).

    Article  CAS  Google Scholar 

  27. Yoo, S., Kim, R., Park, J.-H. & Nam, Y. Electro-optical neural platform integrated with nanoplasmonic inhibition interface. ACS Nano 10, 4274–4281 (2016).

    Article  CAS  Google Scholar 

  28. Gholami Derami, H. et al. Reversible photothermal modulation of electrical activity of excitable cells using polydopamine nanoparticles. Adv. Mater. 33, 2008809 (2021).

    Article  CAS  Google Scholar 

  29. Tan, Q. et al. Inorganic nano-drug delivery systems for crossing the blood–brain barrier: advances and challenges. Coord. Chem. Rev. 494, 215344 (2023).

    Article  CAS  Google Scholar 

  30. Sebesta, C. et al. Subsecond multichannel magnetic control of select neural circuits in freely moving flies. Nat. Mater. 21, 951–958 (2022).

    Article  CAS  Google Scholar 

  31. Hescham, S.-A. et al. Magnetothermal nanoparticle technology alleviates parkinsonian-like symptoms in mice. Nat. Commun. 12, 5569 (2021).

    Article  CAS  Google Scholar 

  32. Zhang, Y. et al. Transcranial nongenetic neuromodulation via bioinspired vesicle-enabled precise NIR-II optical stimulation. Adv. Mater. 35, 2208601 (2023).

    Article  CAS  Google Scholar 

  33. Sou, K., Le, D. L. & Sato, H. Nanocapsules for programmed neurotransmitter release: toward artificial extracellular synaptic vesicles. Small 15, 1900132 (2019).

    Article  Google Scholar 

  34. Roeder, T., Seifert, M., Kähler, C. & Gewecke, M. Tyramine and octopamine: antagonistic modulators of behavior and metabolism. Arch. Insect Biochem. Physiol. 54, 1–13 (2003).

    Article  CAS  Google Scholar 

  35. Taylor, P. & Radic, Z. The cholinesterases: from genes to proteins. Annu. Rev. Pharmacol. Toxicol. 34, 281–320 (1994).

    Article  CAS  Google Scholar 

  36. Manzano, M. & Vallet-Regí, M. Mesoporous silica nanoparticles for drug delivery. Adv. Funct. Mater. 30, 1902634 (2020).

    Article  CAS  Google Scholar 

  37. Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Article  CAS  Google Scholar 

  38. Ai, K., Liu, Y., Ruan, C., Lu, L. & Lu, G. Sp2 C‐dominant N‐doped carbon sub‐micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen‐reduction catalysts. Adv. Mater. 25, 998–1003 (2013).

    Article  CAS  Google Scholar 

  39. Wang, C., Ma, Z., Wang, T. & Su, Z. Synthesis, assembly, and biofunctionalization of silica‐coated gold nanorods for colorimetric biosensing. Adv. Funct. Mater. 16, 1673–1678 (2006).

    Article  CAS  Google Scholar 

  40. Chen, X. et al. Alkalinity triggered the degradation of polydopamine nanoparticles. Polym. Bull. 78, 4439–4452 (2021).

    Article  CAS  Google Scholar 

  41. Dante, S. et al. Selective targeting of neurons with inorganic nanoparticles: revealing the crucial role of nanoparticle surface charge. ACS Nano 11, 6630–6640 (2017).

    Article  CAS  Google Scholar 

  42. Patel, M., Rangan, A. V. & Cai, D. A large-scale model of the locust antennal lobe. J. Comput. Neurosci. 27, 553–567 (2009).

    Article  Google Scholar 

  43. Saha, D., Leong, K., Katta, N. & Raman, B. Multi-unit recording methods to characterize neural activity in the locust (Schistocerca americana) olfactory circuits. J. Visualized Exp. 71, e50139 (2013).

    Google Scholar 

  44. Rein, J., Mustard, J. A., Strauch, M., Smith, B. H. & Galizia, C. G. Octopamine modulates activity of neural networks in the honey bee antennal lobe. J. Comp. Physiol. A 199, 947–962 (2013).

    Article  CAS  Google Scholar 

  45. Roeder, T. Octopamine in invertebrates. Prog. Neurobiol. 59, 533–561 (1999).

    Article  CAS  Google Scholar 

  46. Hammer, M. & Menzel, R. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem. 5, 146–156 (1998).

    Article  CAS  Google Scholar 

  47. Bazhenov, M. et al. Model of cellular and network mechanisms for odor-evoked temporal patterning in the locust antennal lobe. Neuron 30, 569–581 (2001).

    Article  CAS  Google Scholar 

  48. Francia, S. et al. Light-induced charge generation in polymeric nanoparticles restores vision in advanced-stage retinitis pigmentosa rats. Nat. Commun. 13, 3677 (2022).

    Article  CAS  Google Scholar 

  49. Moon, G. D. et al. A new theranostic system based on gold nanocages and phase-change materials with unique features for photoacoustic imaging and controlled release. J. Am. Chem. Soc. 133, 4762–4765 (2011).

    Article  CAS  Google Scholar 

  50. Brown, S. L., Joseph, J. & Stopfer, M. Encoding a temporally structured stimulus with a temporally structured neural representation. Nat. Neurosci. 8, 1568–1576 (2005).

    Article  CAS  Google Scholar 

  51. Pouzat, C., Mazor, O. & Laurent, G. Using noise signature to optimize spike-sorting and to assess neuronal classification quality. J. Neurosci. Methods 122, 43–57 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Air Force Office of Scientific Research (#FA95501910394 (S.S. and B.R.)) and the Office of Naval Research (#N000142112343 (B.R., S.C. and S.S.)). The authors thank the Nano Research Facility (NRF) and the Institute of Materials Science and Engineering at Washington University for providing access to material characterization facilities. Parts of the schematic illustrations depicted in Figs. 1, 2j, 3a, 4a–c, 5a and 6a and Supplementary Figs. 9a and 27a were created in BioRender.com (agreement number KL265ATGEY) and assembled in Microsoft Powerpoint. We thank Y. Liu for his help with the BioRender images.

Author information

Authors and Affiliations

Authors

Contributions

S.S., B.R. and P.G. conceived the project. P.G., S.S., B.R. and S.C. designed the experiments. P.G. performed most of the experiments. P.G. synthesized the NPs with assistance from H.G.D. H.G.D. also assisted in the experiments related to triggered release of the dye in the insect brain. P.G. performed photothermally triggered cargo release kinetics of the NPs with assistance from H.H. and H.B. P.G. performed in vivo neural recordings with assistance from R.C. and M.T. R.C. assisted P.G. in neural data analysis. A.D. performed scanning electron microscopy of NPs. B.M.W. performed 1H NMR analysis of the released octopamine. P.G. wrote the first draft of the manuscript with input from S.S., B.R. and S.C. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Baranidharan Raman or Srikanth Singamaneni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Michael Schmuker, Yao Li, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion 1–12 and Figs. 1–27.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, P., Chandak, R., Debnath, A. et al. Augmenting insect olfaction performance through nano-neuromodulation. Nat. Nanotechnol. (2024). https://doi.org/10.1038/s41565-023-01592-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41565-023-01592-z

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research