Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GRIN2A mutation is a novel indicator of stratifying beneficiaries of immune checkpoint inhibitors in multiple cancers

Abstract

Glutamate-NMDAR receptors (GRINs) have been reported to influence cancer immunogenicity; however, the relationship between GRIN alterations and the response to immune checkpoint inhibitors (ICIs) has not been determined. This study combined clinical characteristics and mutational profiles from multiple cohorts to form a discovery cohort (n = 901). The aim of this study was to investigate the correlation between the mutation status of the GRIN gene and the response to ICI therapy. Additionally, an independent ICI-treated cohort from the Memorial Sloan Kettering Cancer Center (MSKCC, N = 1513) was used for validation. Furthermore, this study explored the associations between GRIN2A mutations and intrinsic and extrinsic immunity using multiomics analysis. In the discovery cohort, patients with GRIN2A-MUTs had improved clinical outcomes, as indicated by a higher objective response rate (ORR: 36.8% vs 25.8%, P = 0.020), durable clinical benefit (DCB: 55.2% vs 38.7%, P = 0.005), prolonged progression-free survival (PFS: HR = 0.65; 95% CI 0.49 to 0.87; P = 0.003), and increased overall survival (OS: HR = 0.67; 95% CI 0.50 to 0.89; P = 0.006). Similar results were observed in the validation cohort, in which GRIN2A-MUT patients exhibited a significant improvement in overall survival (HR = 0.66; 95% CI = 0.49 to 0.88; P = 0.005; adjusted P = 0.045). Moreover, patients with GRIN2A-MUTs exhibited an increase in tumor mutational burden, high expression of costimulatory molecules, increased activity of antigen-processing machinery, and infiltration of various immune cells. Additionally, gene sets associated with cell cycle regulation and the interferon response were enriched in GRIN2A-mutated tumors. In conclusion, GRIN2A mutation is a novel biomarker associated with a favorable response to ICIs in multiple cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the process used for screening the population in this study.
Fig. 2: Association between GRIN2A mutation and clinical outcomes in the discovery cohort.
Fig. 3: Validation of the predictive value of mutated GRIN2A.
Fig. 4: Frequencies and enrichment of biological processes associated with mutated GRIN2A in the TCGA cohort.
Fig. 5: Intrinsic immune response mechanisms associated with GRIN2A mutation.
Fig. 6: Extrinsic immune response mechanisms associated with GRIN2A mutation.
Fig. 7: Graphical illustration of this study.

Similar content being viewed by others

Data availability

The clinicopathological data of patients in the cohorts or patients treated with immune checkpoint agents are described in the Materials and Methods and Supporting Data. The resources, tools and codes used in our analyses are described in the “Methods” section. Other data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Havel JJ, Chowell D, Chan TA. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer. 2019;19:133–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gandhi L, Rodriguez-Abreu D, Gadgeel S, Esteban E, Felip E, De Angelis F, et al. Pembrolizumab plus chemotherapy in metastatic non-small cell lung cancer. N Engl J Med. 2018;378:2078–92.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Grant MJ, Herbst RS, Goldberg SB. Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol. 2021;18:625–44.

    Article  PubMed  Google Scholar 

  5. Davoli T, Uno H, Wooten EC, Elledge SJ. Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science. 2017;355:eaaf8399.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Wu HX, Chen YX, Wang ZX, Zhao Q, He MM, Wang YN, et al. Alteration in TET1 as potential biomarker for immune checkpoint blockade in multiple cancers. J Immunother Cancer. 2019;7:264.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ott PA, Bang YJ, Piha-Paul SA, Razak ARA, Bennouna J, Soria JC, et al. T-cell-inflamed gene-expression profile, programmed death ligand 1 expression, and tumor mutational burden predict efficacy in patients treated with pembrolizumab across 20 cancers: KEYNOTE-028. J Clin Oncol. 2019;37:318–27.

    Article  PubMed  Google Scholar 

  8. Hakimi AA, Voss MH, Kuo F, Sanchez A, Liu M, Nixon BG, et al. Transcriptomic profiling of the tumor microenvironment reveals distinct subgroups of clear cell renal cell cancer: data from a randomized phase III trial. Cancer Discov. 2019;9:510–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou H, Liu J, Zhang Y, Huang Y, Shen J, Yang Y, et al. PBRM1 mutation and preliminary response to immune checkpoint blockade treatment in non-small cell lung cancer. NPJ Precision Oncol. 2020;4:6.

    Article  CAS  Google Scholar 

  10. Gonzalez-Cao M, Viteri S, Karachaliou N, Aguilar A, Garcia-Mosquera JJ, Rosell R. Tumor mutational burden as predictive factor of response to immunotherapy. Trans Lung Cancer Res. 2018;7:S358–61.

    Article  CAS  Google Scholar 

  11. Ready N, Hellmann MD, Awad MM, Otterson GA, Gutierrez M, Gainor JF, et al. First-line nivolumab plus ipilimumab in advanced non-small cell lung cancer (CheckMate 568): outcomes by programmed death ligand 1 and tumor mutational burden as biomarkers. J Clin Oncol. 2019;37:992–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Prickett TD, Gartner JJ, Samuels Y. Genetic and functional analysis of GRIN2A in tumor samples. Methods Mol Biol. 2017;1677:93–116.

    Article  CAS  PubMed  Google Scholar 

  13. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010;62:405–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lang UE, Puls I, Muller DJ, Strutz-Seebohm N, Gallinat J. Molecular mechanisms of schizophrenia. Cell Physiol Biochem. 2007;20:687–702.

    Article  CAS  PubMed  Google Scholar 

  15. Prickett TD, Zerlanko BJ, Hill VK, Gartner JJ, Qutob N, Jiang J, et al. Somatic mutation of GRIN2A in malignant melanoma results in loss of tumor suppressor activity via aberrant NMDAR complex formation. J Investig Dermatol. 2014;134:2390–8.

    Article  CAS  PubMed  Google Scholar 

  16. Wei X, Walia V, Lin JC, Teer JK, Prickett TD, Gartner J, et al. Exome sequencing identifies GRIN2A as frequently mutated in melanoma. Nat Genet. 2011;43:442–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Carvill GL, Regan BM, Yendle SC, O’Roak BJ, Lozovaya N, Bruneau N, et al. GRIN2A mutations cause epilepsy-aphasia spectrum disorders. Nat Genet. 2013;45:1073–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lemke JR, Lal D, Reinthaler EM, Steiner I, Nothnagel M, Alber M, et al. Mutations in GRIN2A cause idiopathic focal epilepsy with rolandic spikes. Nat Genet. 2013;45:1067–72.

    Article  CAS  PubMed  Google Scholar 

  19. Wu WC, Sun HW, Chen J, OuYang HY, Yu XJ, Chen HT, et al. Immunosuppressive immature myeloid cell generation is controlled by glutamine metabolism in human cancer. Cancer Immunol Res. 2019;7:1605–18.

    Article  CAS  PubMed  Google Scholar 

  20. Gualandris A, Noghero A, Geuna M, Arese M, Valdembri D, Serini G, et al. Microenvironment drives the endothelial or neural fate of differentiating embryonic stem cells coexpressing neuropilin-1 and Flk-1. FASEB J. 2009;23:68–78.

    Article  CAS  PubMed  Google Scholar 

  21. Ferguson HJ, Wragg JW, Ward S, Heath VL, Ismail T, Bicknell R. Glutamate dependent NMDA receptor 2D is a novel angiogenic tumor endothelial marker in colorectal cancer. Oncotarget. 2016;7:20440–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Bagaev A, Kotlov N, Nomie K, Svekolkin V, Gafurov A, Isaeva O, et al. Conserved pancancer microenvironment subtypes predict response to immunotherapy. Cancer Cell. 2021;39:845–65.e7.

    Article  CAS  PubMed  Google Scholar 

  23. Taylor MH, Lee CH, Makker V, Rasco D, Dutcus CE, Wu J, et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J Clin Oncol. 2020;38:1154–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Finn RS, Ikeda M, Zhu AX, Sung MW, Baron AD, Kudo M, et al. Phase Ib study of lenvatinib plus pembrolizumab in patients with unresectable hepatocellular carcinoma. J Clin Oncol. 2020;38:2960–70.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Huang L, Luo S, Zhang X, Cai Y, Xue F, Hu H, et al. Distinct genomic landscape of colorectal mucinous carcinoma determined via comprehensive genomic profiling: steps to a new treatment strategy. Front Oncol. 2021;11:603564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiu Y, Liu L, Yang H, Chen H, Deng Q, Xiao D, et al. Integrating histologic and genomic characteristics to predict tumor mutation burden of early-stage non-small cell lung cancer. Front Oncol. 2020;10:608989.

    Article  PubMed  Google Scholar 

  27. Braun DA, Hou Y, Bakouny Z, Ficial M, Sant’ Angelo M, Forman J, et al. Interplay of somatic alterations and immune infiltration modulates response to PD-1 blockade in advanced clear cell renal cell carcinoma. Nat Med. 2020;26:909–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu D, Schilling B, Liu D, Sucker A, Livingstone E, Jerby-Arnon L, et al. Integrative molecular and clinical modeling of clinical outcomes to PD1 blockade in patients with metastatic melanoma. Nat Med. 2019;25:1916–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miao D, Margolis CA, Vokes NI, Liu D, Taylor-Weiner A, Wankowicz SM, et al. Genomic correlates of response to immune checkpoint blockade in microsatellite-stable solid tumors. Nat Genet. 2018;50:1271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hellmann MD, Nathanson T, Rizvi H, Creelan BC, Sanchez-Vega F, Ahuja A, et al. Genomic features of response to combination immunotherapy in patients with advanced non-small cell lung cancer. Cancer Cell. 2018;33:843–52.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science. 2015;350:207–11.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4 blockade in melanoma. N Engl J Med. 2014;371:2189–99.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Long J, Wang D, Yang X, Wang A, Lin Y, Zheng M, et al. Identification of NOTCH4 mutation as a response biomarker for immune checkpoint inhibitor therapy. BMC Med. 2021;19:154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Samstein RM, Lee CH, Shoushtari AN, Hellmann MD, Shen R, Janjigian YY, et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet. 2019;51:202–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, et al. The immune landscape of cancer. Immunity. 2019;51:411–2.

    Article  CAS  PubMed  Google Scholar 

  36. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165:35–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. Nat Med. 2017;23:703–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An integrated TCGA pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell. 2018;173:400–16.e11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat Methods. 2015;12:453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Reimand J, Isserlin R, Voisin V, Kucera M, Tannus-Lopes C, Rostamianfar A, et al. Pathway enrichment analysis and visualization of omics data using g:Profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc. 2019;14:482–517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao J, Chang MT, Johnsen HC, Gao SP, Sylvester BE, Sumer SO, et al. 3D clusters of somatic mutations in cancer reveal numerous rare mutations as functional targets. Genome Med. 2017;9:4.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Garrido F, Aptsiauri N. Cancer immune escape: MHC expression in primary tumors versus metastases. Immunology. 2019;158:255–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spranger S. Mechanisms of tumor escape in the context of the T-cell-inflamed and the non-T-cell-inflamed tumor microenvironment. Int Immunol. 2016;28:383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu H, Yang Z, Lu W, Chen Z, Chen L, Han S, et al. Chemokines and chemokine receptors: a new strategy for breast cancer therapy. Cancer Med. 2020;9:3786–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bergamaschi C, Pandit H, Nagy BA, Stellas D, Jensen SM, Bear J, et al. Heterodimeric IL-15 delays tumor growth and promotes intratumoral CTL and dendritic cell accumulation by a cytokine network involving XCL1, IFN-gamma, CXCL9 and CXCL10. J Immunotherapy Cancer. 2020;8:e000599.

    Article  Google Scholar 

  46. Jia Q, Wu W, Wang Y, Alexander PB, Sun C, Gong Z, et al. Local mutational diversity drives intratumoral immune heterogeneity in non-small cell lung cancer. Nat Commun. 2018;9:5361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xu DH, Li Q, Hu H, Ni B, Liu X, Huang C, et al. Transmembrane protein GRINA modulates aerobic glycolysis and promotes tumor progression in gastric cancer. J Exp Clin Cancer Res. 2018;37:308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. D’Mello SA, Joseph WR, Green TN, Leung EY, During MJ, Finlay GJ, et al. Selected GRIN2A mutations in melanoma cause oncogenic effects that can be modulated by extracellular glutamate. Cell Calcium. 2016;60:384–95.

    Article  PubMed  Google Scholar 

  49. Huinen ZR, Huijbers EJM, van Beijnum JR, Nowak-Sliwinska P, Griffioen AW. Anti-angiogenic agents - overcoming tumor endothelial cell anergy and improving immunotherapy outcomes. Nature Rev Clin Oncol. 2021;18:527–40.

    Article  Google Scholar 

  50. Long J, Lin J, Wang A, Wu L, Zheng Y, Yang X, et al. PD-1/PD-L blockade in gastrointestinal cancers: lessons learned and the road toward precision immunotherapy. J Hematol Oncol. 2017;10:146.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Wood MA, Nellore A, Thompson RF. Tumor mutation burden-from doubts to concerns. JAMA Oncol. 2019;5:1808–9.

    Article  PubMed  Google Scholar 

  52. Tsao MS, Kerr KM, Kockx M, Beasley MB, Borczuk AC, Botling J, et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thoracic Oncol. 2018;13:1302–11.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Xundong Zhang, and Xing-jie Hao (School of Public Health, Tongji Medical College, HUST) for their support in the bioinformatics analyses of this study.

Funding

This work was supported by the National Nature Science Foundation of China (No. 82273441 and 81874065), the National Basic Research Program of China (2020YFA0710700), the Knowledge Innovation Program of Wuhan-Shuguang Project (No. 2022020801020456), the Tongji Hospital (HUST) Foundation for Excellent Young Scientist (No. 2020YQ05), and the first level of the Public Health Youth Top Talent Project of Hubei Province (No. 2022SCZ051).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: ZD, WZ, and BZ. Acquisition, analysis, interpretation of the data, critical revision of the manuscript: all the authors. Drafting of the manuscript: GL, TL, GJ and ZD. Study supervision: BZ and WZ.

Corresponding authors

Correspondence to Bixiang Zhang, Wan-guang Zhang or Ze-yang Ding.

Ethics declarations

Competing interests

ZD served as a speaker and consultant for Bayer, Eisai, Roche, MSD, Astra-Zeneca, Innovent, Hengrui, and BeiGene. The remaining authors have nothing to disclose.

Ethics approval and consent to participate

All the data used in this study are deidentified and publicly available. Therefore, the Institutional Review Board (IRB) of Tongji Hospital was waived.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Gx., Chang, Rz., Liu, Tt. et al. GRIN2A mutation is a novel indicator of stratifying beneficiaries of immune checkpoint inhibitors in multiple cancers. Cancer Gene Ther 31, 586–598 (2024). https://doi.org/10.1038/s41417-024-00730-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41417-024-00730-6

Search

Quick links