Skip to main content
Log in

Modeling ProteinProtein Interaction of the KNOTTED-LIKE HOMEOBOX 3 Protein Involved in Symbiotic Nodule Development in Medicago truncatula

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

KNOTTED-LIKE HOMEOBOX (KNOX) proteins are homeodomain containing transcription factors, and regulate many aspects of plant development through homo or heterodimerization with another group of TALE transcription factors known as BELL. In Medicago truncatula the MtKNOX3 gene is involved in nodule development. In this work, we hypothesized that MtKNOX3 involvement in the activation of cytokinin signaling during nodule development could be through heterodimerization with BELL proteins. Thereby, the expression of different BELL genes in Medicago was analyzed, and it was shown that the expression of Medtr8g078480 and Medtr8g098815 genes increases during nodule development. Besides, the Medtr8g078480 shows a co-expression pattern with MtKNOX3 at different developmental stages of nodule development. Afterward, the interaction of MtKNOX3 with the MtBELL1-2 (Medtr8g078480) protein was shown using docking, and their stability was analyzed by molecular dynamic simulation and mmpbsa methods. Moreover, the stability of MtKNOX3- Medtr8g078480 heterodimers was compared with the MtKNOX3 homodimer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Hay A., Tsiantis M. 2010. KNOX genes: Versatile regulators of plant development and diversity. Development. 137 (19), 3153‒3165.

    Article  CAS  PubMed  Google Scholar 

  2. Bharathan G., Janssen B.-J., Kellogg E.A., Sinha N. 1999. Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Mol. Biol. Evol. 16 (4), 553‒563.

    Article  CAS  PubMed  Google Scholar 

  3. Kerstetter R., Vollbrecht E., Lowe B., Veit B., Yamaguchi J., Hake S. 1994. Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell. 6 (12), 1877‒1887.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mukherjee K., Brocchieri L., Bürglin T.R. 2009. A comprehensive classification and evolutionary analysis of plant homeobox genes. Mol. Biol. Evol. 26 (12), 2775‒2794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belles-Boix E., Hamant O., Witiak S.M., Morin H., Traas J., Pautot V. 2006. KNAT6: An Arabidopsis homeobox gene involved in meristem activity and organ separation. Plant Cell. 18 (8), 1900‒1907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Byrne M.E., Simorowski J., Martiensse R.A. 2002. ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development. 129 (8), 1957‒1965.

    Article  CAS  PubMed  Google Scholar 

  7. Long J.A., Moan E.I., Medford J.I., Barton M.K. 1996. A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature. 379 (6560), 66‒69.

    Article  CAS  PubMed  Google Scholar 

  8. Bharathan G., Goliber T.E., Moore C., Kessler S., Pham T., Sinha N.R. 2002. Homologies in leaf form inferred from KNOXI gene expression during development. Science. 296 (5574), 1858‒1860.

    Article  CAS  PubMed  Google Scholar 

  9. Hareven D., Gutfinger T., Parnis A., Eshed Y., Lifschitz E. 1996. The making of a compound leaf: Genetic manipulation of leaf architecture in tomato. Cell. 84 (5), 735‒744.

    Article  CAS  PubMed  Google Scholar 

  10. Wang Y., Jiao Y. 2018. Axillary meristem initiation—A way to branch out. Curr. Opin. Plant Biol. 41, 61‒66.

    Article  PubMed  Google Scholar 

  11. Yang Q., Cong T., Yao Y., Cheng T., Yuan C., Zhang Q. 2023. KNOX genes were involved in regulating axillary bud formation of Chrysanthemum × morifolium. Int. J. Mol. Sci. 24 (8), 7081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li E., Bhargava A., Qiang W., Friedmann M.C., Forneris N., Savidge R.A., Johnson L.A., Mansfield S.D., Ellis B.E., Douglas C.J. 2012. The Class II KNOX gene KNAT7 negatively regulates secondary wall formation in Arabidopsis and is functionally conserved in Populus. New Phytol. 194 (1), 102‒115.

    Article  CAS  PubMed  Google Scholar 

  13. Serikawa K.A., Martinez-Laborda A., Kim H.S., Zambryski P.C. 1997. Localization of expression of KNAT3, a class 2 knotted1-like gene. Plant J. 11 (4), 853‒861.

    Article  CAS  PubMed  Google Scholar 

  14. Truernit E., Siemering K.R., Hodge S., Grbic V., Haseloff J. 2006. A map of KNAT gene expression in the Arabidopsis root. Plant Mol. Biol. 60 (1), 1‒20.

    Article  CAS  PubMed  Google Scholar 

  15. Azarakhsh M., Kirienko A., Zhukov V., Lebedeva M., Dolgikh E., Lutova L. 2015. KNOTTED1-LIKE HOMEOBOX 3: A new regulator of symbiotic nodule development. J. Exp. Bot. 66 (22), 7181‒7195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Di Giacomo E., Laffont C., Sciarra F., Iannelli M.A., Frugier F., Frugis G. 2017. KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development. New Phytol. 213 (2), 822‒837.

    Article  CAS  PubMed  Google Scholar 

  17. Truernit E., Haseloff J. 2007. A role for KNAT class II genes in root development. Plant Signal. Behav. 2 (1), 10‒12.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Magnani E., Hake S. 2008. KNOX lost the OX: The Arabidopsis KNATM gene defines a novel class of KNOX transcriptional regulators missing the homeodomain. Plant Cell. 20 (4), 875‒887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nagasaki H., Sakamoto T., Sato Y., Matsuoka M. 2001. Functional analysis of the conserved domains of a rice KNOX homeodomain protein, OSH15. Plant Cell. 13 (9), 2085‒2098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bellaoui M., Pidkowich M.S., Samach A., Kushalap-pa K., Kohalmi S.E., Modrusan Z., Crosby W.L., Haughn G.W. 2001. The Arabidopsis BELL1 and KNOX TALE homeodomain proteins interact through a domain conserved between plants and animals. Plant Cell. 13 (11), 2455‒2470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bhatt A.M., Etchells J.P., Canales C., Lagodienko A., Dickinson H. 2004. VAAMANA‒a BEL1-like homeodomain protein, interacts with KNOX proteins BP and STM and regulates inflorescence stem growth in Arabidopsis. Gene. 328, 103‒111.

    Article  CAS  PubMed  Google Scholar 

  22. Cole M., Nolte C., Werr W. 2006. Nuclear import of the transcription factor SHOOT MERISTEMLESS depends on heterodimerization with BLH proteins expressed in discrete sub-domains of the shoot apical meristem of Arabidopsis thaliana. Nucleic Acids Res. 34 (4), 1281‒1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niu X., Fu D. 2022. The roles of BLH transcription factors in plant development and environmental response. Int. J. Mol. Sci. 23 (7), 3731.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kim D., Cho Y.H., Ryu H., Kim Y., Kim T.H., Hwang I. 2013. BLH1 and KNAT3 modulate ABA responses during germination and early seedling development in Arabidopsis. Plant J. 75 (5), 755‒766.

    Article  CAS  PubMed  Google Scholar 

  25. Rutjens B., Bao D., Van Eck-Stouten E., Brand M., Smeekens S., Proveniers M. 2009. Shoot apical meristem function in Arabidopsis requires the combined activities of three BEL1-like homeodomain proteins. Plant J. 58 (4), 641‒654.

    Article  CAS  PubMed  Google Scholar 

  26. Smith H.M., Boschke I., Hake S. 2002. Selective interaction of plant homeodomain proteins mediates high DNA-binding affinity. Proc. Natl. Acad. Sci . U. S. A. 99 (14), 9579‒9584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen H., Banerjee A.K., Hannapel D.J. 2004. The tandem complex of BEL and KNOX partners is required for transcriptional repression of ga20ox1. Plant J. 38 (2), 276‒284.

    Article  CAS  PubMed  Google Scholar 

  28. Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M. 2005. Curr. Biol. 15 (17), 1560‒1565.

    Article  CAS  PubMed  Google Scholar 

  29. Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S., Matsuoka M. 2001. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 15 (5), 581‒590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Heckmann A.B., Sandal N., Bek A.S., Madsen L.H., Jurkiewicz A., Nielsen M.W., Tirichine L., Stougaard J. 2011. Cytokinin induction of root nodule primordia in Lotus japonicus is regulated by a mechanism operating in the root cortex. Mol. Plant–Microbe Interact. 24 (11), 1385‒1395.

    Article  CAS  PubMed  Google Scholar 

  31. Murray J.D., Karas B.J., Sato S., Tabata S., Amyot L., Szczyglowski K. 2007. Science. 315 (5808), 101‒104.

    Article  CAS  PubMed  Google Scholar 

  32. Tirichine L., Sandal N., Madsen L.H., Radutoiu S., Albrektsen A.S., Sato S., Asamizu E., Tabata S., Stougaard J. 2007. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science. 315 (5808), 104‒107.

    Article  CAS  PubMed  Google Scholar 

  33. Azarakhsh M., Rumyantsev A.M., Lebedeva M.A., Lutova L.A. 2020. Cytokinin biosynthesis genes expressed during nodule organogenesis are directly regulated by the KNOX3 protein in Medicago truncatula. PloS One. 15 (4), e0232352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fåhraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16 (2), 374‒381.

    PubMed  Google Scholar 

  35. Livak K.J. Schmittgen T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and 2−ΔΔCT method. Methods. 25 (4), 402‒408.

    Article  CAS  PubMed  Google Scholar 

  36. Yang J., Yan R., Roy A., Xu D., Poisson J., Zhang Y. 2015. The I-TASSER Suite: Protein structure and function prediction. Nat. Methods. 12 (1), 7‒8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kozakov D., Hall D.R., Xia B., Porter K.A., Padhorny D., Yueh C., Beglov D., Vajda S. 2017. The ClusPro web server for protein−protein docking. Nat. Protoc. 2 (2), 255‒278.

    Article  Google Scholar 

  38. Smith H.M., Campbell B.C., Hake S. 2004. Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH. Curr. Biol. 14 (9), 812‒817.

    Article  CAS  PubMed  Google Scholar 

  39. Dolgikh A.V., Rudaya E.S., Dolgikh E.A. 2020. Identification of BELL transcription factors involved in nodule initiation and development in the legumes Pisum sativum and Medicago truncatula. Plants. 9 (12), 1808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bürglin T.R. 1997. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25 (21), 4173‒4180.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Bürglin T.R. 1998. The PBC domain contains a MEI-NOX domain: coevolution of Hox and TALE homeobox genes? Dev. Genes Evol. 208 (2), 113‒116.

    Article  PubMed  Google Scholar 

  42. Berthelsen J., Zappavigna V., Ferretti E., Mavilio F., Blasi F. 1998. The novel homeoprotein Prep1 modulates Pbx-Hox protein cooperativity. EMBO J. 17 (5), 1434‒1445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hackbusch J., Richter K., Müller J., Salamini F., Uhrig J.F. 2005. A central role of Arabidopsis thaliana ovate family proteins in networking and subcellular localization of 3-aa loop extension homeodomain proteins. Proc. Natl. Acad. Sci. U. S. A. 102 (13), 4908‒4912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Qin W., Yin Q., Chen J., Zhao X., Yue F., He J., Yang L., Liu L., Zeng Q., Lu F., Mitsuda N., Ohme-Takagi M., Wu A.M. 2020. The class II KNOX transcription factors KNAT3 and KNAT7 synergistically regulate monolignol biosynthesis in arabidopsis. J. Exp. Bot. 71 (18), 5469‒5483.

    Article  CAS  PubMed  Google Scholar 

  45. Zhou J., Qi Y., Nie J., Guo L., Luo M., McLellan H., Boevink P.C., Birch P.R., Tian Z. 2022. A phytophthora effector promotes homodimerization of host transcription factor StKNOX3 to enhance susceptibility. J. Exp. Bot. 73 (19), 6902‒6915.

    Article  CAS  PubMed  Google Scholar 

  46. Valdés-Tresanco M.S., Valdés-Tresanco M.E., Valiente P.A., Moreno E. 2021. gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. J. Chem. Theory Comput. 17 (10), 6281‒6291.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Material preparation, data collection, and analysis were performed by Mahboobeh Azarakhsh, original draft preparation: Mahboobeh Azarakhsh, review and editing, Mahboobeh Azarakhsh, Maria Lebedeva, and Vijay Vishvakarma. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to M. Azarakhsh.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azarakhsh, M., Lebedeva, M. & Vishvakarma, V.K. Modeling ProteinProtein Interaction of the KNOTTED-LIKE HOMEOBOX 3 Protein Involved in Symbiotic Nodule Development in Medicago truncatula. Mol Biol 58, 336–345 (2024). https://doi.org/10.1134/S0026893324020031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893324020031

Keywords:

Navigation