Skip to main content

Advertisement

Log in

Interleukins in Epilepsy: Friend or Foe

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Epilepsy is a chronic neurological disorder with recurrent unprovoked seizures, affecting ~ 65 million worldwide. Evidence in patients with epilepsy and animal models suggests a contribution of neuroinflammation to epileptogenesis and the development of epilepsy. Interleukins (ILs), as one of the major contributors to neuroinflammation, are intensively studied for their association and modulatory effects on ictogenesis and epileptogenesis. ILs are commonly divided into pro- and anti-inflammatory cytokines and therefore are expected to be pathogenic or neuroprotective in epilepsy. However, both protective and destructive effects have been reported for many ILs. This may be due to the complex nature of ILs, and also possibly due to the different disease courses that those ILs are involved in. In this review, we summarize the contributions of different ILs in those processes and provide a current overview of recent research advances, as well as preclinical and clinical studies targeting ILs in the treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vezzani A, Balosso S, Ravizza T. Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol 2019, 15: 459–472.

    Article  CAS  PubMed  Google Scholar 

  2. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 2011, 10: 173–186.

    Article  PubMed  Google Scholar 

  3. Rana A, Musto AE. The role of inflammation in the development of epilepsy. J Neuroinflammation 2018, 15: 144.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Galovic M, Ferreira-Atuesta C, Abraira L, Döhler N, Sinka L, Brigo F. Seizures and epilepsy after stroke: Epidemiology, biomarkers and management. Drugs Aging 2021, 38: 285–299.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zilberter Y, Popova I, Zilberter M. Unifying mechanism behind the onset of acquired epilepsy. Trends Pharmacol Sci 2022, 43: 87–96.

    Article  CAS  PubMed  Google Scholar 

  6. Devinsky O, Vezzani A, O’Brien TJ, Jette N, Scheffer IE, de Curtis M, et al. Epilepsy. Nat Rev Dis Primers 2018, 4: 18024.

    Article  PubMed  Google Scholar 

  7. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol 2011, 7: 31–40.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao J, Wang Y, Xu C, Liu K, Wang Y, Chen L, et al. Therapeutic potential of an anti-high mobility group box-1 monoclonal antibody in epilepsy. Brain Behav Immun 2017, 64: 308–319.

    Article  CAS  PubMed  Google Scholar 

  9. Zhao J, Zheng Y, Liu K, Chen J, Lai N, Fei F, et al. HMGB1 is a therapeutic target and biomarker in diazepam-refractory status epilepticus with wide time window. Neurotherapeutics 2020, 17: 710–721.

    Article  CAS  PubMed  Google Scholar 

  10. Jiang GT, Shao L, Kong S, Zeng ML, Cheng JJ, Chen TX, et al. Complement C3 aggravates post-epileptic neuronal injury Via activation of TRPV1. Neurosci Bull 2021, 37: 1427–1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vezzani A, Lang B, Aronica E. Immunity and inflammation in epilepsy. Cold Spring Harb Perspect Med 2015, 6: a022699.

    Article  PubMed  Google Scholar 

  12. Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun 2011, 25: 1281–1289.

    Article  CAS  PubMed  Google Scholar 

  13. Aledo-Serrano A, Hariramani R, Gonzalez-Martinez A, Álvarez-Troncoso J, Toledano R, Bayat A, et al. Anakinra and tocilizumab in the chronic phase of febrile infection-related epilepsy syndrome (FIRES): Effectiveness and safety from a case-series. Seizure 2022, 100: 51–55.

    Article  PubMed  Google Scholar 

  14. Gilhus NE, Deuschl G. Neuroinflammation—a common thread in neurological disorders. Nat Rev Neurol 2019, 15: 429–430.

    Article  PubMed  Google Scholar 

  15. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev 2018, 281: 8–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ravizza T, Vezzani A. Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type I in the rat limbic system. Neuroscience 2006, 137: 301–308.

    Article  CAS  PubMed  Google Scholar 

  17. Jo EK, Kim JK, Shin DM, Sasakawa C. Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol 2016, 13: 148–159.

    Article  CAS  PubMed  Google Scholar 

  18. Vezzani A, Balosso S, Ravizza T. The role of cytokines in the pathophysiology of epilepsy. Brain Behav Immun 2008, 22: 797–803.

    Article  CAS  PubMed  Google Scholar 

  19. Plata-Salamán CR, Ilyin SE, Turrin NP, Gayle D, Flynn MC, Romanovitch AE, et al. Kindling modulates the IL-1beta system, TNF-alpha, TGF-beta1, and neuropeptide mRNAs in specific brain regions. Brain Res Mol Brain Res 2000, 75: 248–258.

    Article  PubMed  Google Scholar 

  20. Feng B, Tang Y, Chen B, Xu C, Wang Y, Dai Y, et al. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling. Sci Rep 2016, 6: 21931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: Functional evidence for enhancement of electrographic seizures. J Neurosci 1999, 19: 5054–5065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Simoni MG, Perego C, Ravizza T, Moneta D, Conti M, Marchesi F, et al. Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur J Neurosci 2000, 12: 2623–2633.

    Article  PubMed  Google Scholar 

  23. Tan THL, Perucca P, O’Brien TJ, Kwan P, Monif M. Inflammation, ictogenesis, and epileptogenesis: An exploration through human disease. Epilepsia 2021, 62: 303–324.

    Article  PubMed  Google Scholar 

  24. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: Evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis 2008, 29: 142–160.

    Article  CAS  PubMed  Google Scholar 

  25. Shi LM, Chen RJ, Zhang H, Jiang CM, Gong J. Cerebrospinal fluid neuron specific enolase, interleukin-1β and erythropoietin concentrations in children after seizures. Childs Nerv Syst 2017, 33: 805–811.

    Article  PubMed  Google Scholar 

  26. Peltola J, Palmio J, Korhonen L, Suhonen J, Miettinen A, Hurme M, et al. Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic-clonic seizures. Epilepsy Res 2000, 41: 205–211.

    Article  CAS  PubMed  Google Scholar 

  27. Alapirtti T, Rinta S, Hulkkonen J, Mäkinen R, Keränen T, Peltola J. Interleukin-6, interleukin-1 receptor antagonist and interleukin-1beta production in patients with focal epilepsy: A video-EEG study. J Neurol Sci 2009, 280: 94–97.

    Article  CAS  PubMed  Google Scholar 

  28. Bauer S, Cepok S, Todorova-Rudolph A, Nowak M, Köller M, Lorenz R, et al. Etiology and site of temporal lobe epilepsy influence postictal cytokine release. Epilepsy Res 2009, 86: 82–88.

    Article  CAS  PubMed  Google Scholar 

  29. Lehtimäki KA, Keränen T, Palmio J, Mäkinen R, Hurme M, Honkaniemi J, et al. Increased plasma levels of cytokines after seizures in localization-related epilepsy. Acta Neurol Scand 2007, 116: 226–230.

    Article  PubMed  Google Scholar 

  30. Virta M, Hurme M, Helminen M. Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures. Epilepsia 2002, 43: 920–923.

    Article  CAS  PubMed  Google Scholar 

  31. Heida JG, Pittman QJ. Causal links between brain cytokines and experimental febrile convulsions in the rat. Epilepsia 2005, 46: 1906–1913.

    Article  CAS  PubMed  Google Scholar 

  32. Dubé C, Vezzani A, Behrens M, Bartfai T, Baram TZ. Interleukin-1beta contributes to the generation of experimental febrile seizures. Ann Neurol 2005, 57: 152–155.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vezzani A, Moneta D, Conti M, Richichi C, Ravizza T, De Luigi A, et al. Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc Natl Acad Sci U S A 2000, 97: 11534–11539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Auvin S, Shin D, Mazarati A, Sankar R. Inflammation induced by LPS enhances epileptogenesis in immature rat and may be partially reversed by IL1RA. Epilepsia 2010, 51: 34–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu C, Zhang S, Gong Y, Nao J, Shen Y, Tan B, et al. Subicular caspase-1 contributes to pharmacoresistance in temporal lobe epilepsy. Ann Neurol 2021, 90: 377–390.

    Article  CAS  PubMed  Google Scholar 

  36. Tang Y, Feng B, Wang Y, Sun H, You Y, Yu J, et al. Structure-based discovery of CZL80, a caspase-1 inhibitor with therapeutic potential for febrile seizures and later enhanced epileptogenic susceptibility. Br J Pharmacol 2020, 177: 3519–3534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Diamond ML, Ritter AC, Failla MD, Boles JA, Conley YP, Kochanek PM, et al. IL-1β associations with posttraumatic epilepsy development: A genetics and biomarker cohort study. Epilepsia 2014, 55: 1109–1119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Q, Li G, Zhao D, Yang P, Shabier T, Tuerxun T. Association between IL-1β and recurrence after the first epileptic seizure in ischemic stroke patients. Sci Rep 2020, 10: 13505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shen L, Yang J, Tang Y. Predictive values of the SeLECT score and IL-1β for post-stroke epilepsy. Neuropsychiatr Dis Treat 2021, 17: 2465–2472.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ma X, Sun L, Li X, Xu Y, Zhang Q. Polymorphism of IL-1B rs16944 (T/C) associated with serum levels of IL-1β affects seizure susceptibility in ischemic stroke patients. Adv Clin Exp Med 2023, 32: 23–29.

    Article  PubMed  Google Scholar 

  41. Kanemoto K, Kawasaki J, Miyamoto T, Obayashi H, Nishimura M. Interleukin (IL)1beta, IL-1alpha, and IL-1 receptor antagonist gene polymorphisms in patients with temporal lobe epilepsy. Ann Neurol 2000, 47: 571–574.

    Article  CAS  PubMed  Google Scholar 

  42. Alyu F, Dikmen M. Inflammatory aspects of epileptogenesis: Contribution of molecular inflammatory mechanisms. Acta Neuropsychiatr 2017, 29: 1–16.

    Article  PubMed  Google Scholar 

  43. Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation 2000, 7: 153–159.

    Article  CAS  PubMed  Google Scholar 

  44. Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, et al. GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol Dis 2015, 82: 311–320.

    Article  CAS  PubMed  Google Scholar 

  45. Viviani B, Bartesaghi S, Gardoni F, Vezzani A, Behrens MM, Bartfai T, et al. Interleukin-1beta enhances NMDA receptor-mediated intracellular calcium increase through activation of the Src family of kinases. J Neurosci 2003, 23: 8692–8700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Postnikova TY, Zubareva OE, Kovalenko AA, Kim KK, Magazanik LG, Zaitsev AV. Status epilepticus impairs synaptic plasticity in rat hippocampus and is followed by changes in expression of NMDA receptors. Biochemistry Moscow 2017, 82: 282–290.

    Article  CAS  PubMed  Google Scholar 

  47. Han T, Qin Y, Mou C, Wang M, Jiang M, Liu B. Seizure induced synaptic plasticity alteration in hippocampus is mediated by IL-1β receptor through PI3K/Akt pathway. Am J Transl Res 2016, 8: 4499–4509.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Prieto GA, Smith ED, Tong L, Nguyen M, Cotman CW. Inhibition of LTP-induced translation by IL-1β reduces the level of newly synthesized proteins in hippocampal dendrites. ACS Chem Neurosci 2019, 10: 1197–1203.

    Article  CAS  PubMed  Google Scholar 

  49. Tao AF, Xu ZH, Chen B, Wang Y, Wu XH, Zhang J, et al. The pro-inflammatory cytokine interleukin-1β is a key regulatory factor for the postictal suppression in mice. CNS Neurosci Ther 2015, 21: 642–650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yamanaka G, Ishida Y, Kanou K, Suzuki S, Watanabe Y, Takamatsu T, et al. Towards a treatment for neuroinflammation in epilepsy: Interleukin-1 receptor antagonist, anakinra, as a potential treatment in intractable epilepsy. Int J Mol Sci 2021, 22: 6282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai YC, Muscal E, Wells E, Shukla N, Eschbach K, Lee KH, et al. Anakinra usage in febrile infection related epilepsy syndrome: An international cohort. Ann Clin Transl Neurol 2020, 7: 2467–2474.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW, et al. Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol 2016, 80: 939–945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Westbrook C, Subramaniam T, Seagren RM, Tarula E, Co D, Furstenberg-Knauff M, et al. Febrile infection-related epilepsy syndrome treated successfully with anakinra in a 21-year-old woman. WMJ 2019, 118: 135–139.

    PubMed  PubMed Central  Google Scholar 

  54. Mochol M, Taubøll E, Sveberg L, Tennøe B, Berg Olsen K, Heuser K, et al. Seizure control after late introduction of anakinra in a patient with adult onset Rasmussen’s encephalitis. Epilepsy Behav Rep 2021, 16: 100462.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Abcouwer SF. Angiogenic factors and cytokines in diabetic retinopathy. J Clin Cell Immunol 2013, Suppl 1: 1–12.

  56. DeSena AD, Do T, Schulert GS. Systemic autoinflammation with intractable epilepsy managed with interleukin-1 blockade. J Neuroinflammation 2018, 15: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Jyonouchi H, Geng L. Resolution of EEG findings and clinical improvement in a patient with encephalopathy and ESES with a combination of immunomodulating agents other than corticosteroids: A case report. Epilepsy Behav Rep 2020, 14: 100379.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Cavalli G, Colafrancesco S, Emmi G, Imazio M, Lopalco G, Maggio MC, et al. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun Rev 2021, 20: 102763.

    Article  CAS  PubMed  Google Scholar 

  59. McDowell TL, Symons JA, Ploski R, Førre O, Duff GW. A genetic association between juvenile rheumatoid arthritis and a novel interleukin-1 alpha polymorphism. Arthritis Rheum 1995, 38: 221–228.

    Article  CAS  PubMed  Google Scholar 

  60. Kan AA, de Jager W, de Wit M, Heijnen C, van Zuiden M, Ferrier C, et al. Protein expression profiling of inflammatory mediators in human temporal lobe epilepsy reveals co-activation of multiple chemokines and cytokines. J Neuroinflammation 2012, 9: 207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sheng JG, Boop FA, Mrak RE, Griffin WS. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: Association with interleukin-1 alpha immunoreactivity. J Neurochem 1994, 63: 1872–1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gahring LC, White HS, Skradski SL, Carlson NG, Rogers SW. Interleukin-1alpha in the brain is induced by audiogenic seizure. Neurobiol Dis 1997, 3: 263–269.

    Article  CAS  PubMed  Google Scholar 

  63. Saghazadeh A, Gharedaghi M, Meysamie A, Bauer S, Rezaei N. Proinflammatory and anti-inflammatory cytokines in febrile seizures and epilepsy: Systematic review and meta-analysis. Rev Neurosci 2014, 25: 281–305.

    Article  CAS  PubMed  Google Scholar 

  64. Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJA. The cytokine response to human traumatic brain injury: Temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 2011, 31: 658–670.

    Article  CAS  PubMed  Google Scholar 

  65. Luheshi NM, Kovács KJ, Lopez-Castejon G, Brough D, Denes A. Interleukin-1α expression precedes IL-1β after ischemic brain injury and is localised to areas of focal neuronal loss and penumbral tissues. J Neuroinflammation 2011, 8: 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 2005, 22: 885–895.

    Article  PubMed  Google Scholar 

  67. Boutin H, LeFeuvre RA, Horai R, Asano M, Iwakura Y, Rothwell NJ. Role of IL-1alpha and IL-1beta in ischemic brain damage. J Neurosci 2001, 21: 5528–5534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 2005, 23: 479–490.

    Article  CAS  PubMed  Google Scholar 

  69. Andoh A, Nishida A. Pro- and anti-inflammatory roles of interleukin (IL)-33, IL-36, and IL-38 in inflammatory bowel disease. J Gastroenterol 2023, 58: 69–78.

    Article  CAS  PubMed  Google Scholar 

  70. Cayrol C, Girard JP. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev 2018, 281: 154–168.

    Article  CAS  PubMed  Google Scholar 

  71. Sun Y, Wen Y, Wang L, Wen L, You W, Wei S, et al. Therapeutic opportunities of interleukin-33 in the central nervous system. Front Immunol 2021, 12: 654626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ethemoglu O, Calık M, Koyuncu I, Ethemoglu KB, Göcmen A, Güzelcicek A, et al. Interleukin-33 and oxidative stress in epilepsy patients. Epilepsy Res 2021, 176: 106738.

    Article  CAS  PubMed  Google Scholar 

  73. Lissak IA, Zafar SF, Westover MB, Schleicher RL, Kim JA, Leslie-Mazwi T, et al. Soluble ST2 is associated with new epileptiform abnormalities following nontraumatic subarachnoid hemorrhage. Stroke 2020, 51: 1128–1134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gao Y, Luo CL, Li LL, Ye GH, Gao C, Wang HC, et al. IL-33 provides neuroprotection through suppressing apoptotic, autophagic and NF-κB-mediated inflammatory pathways in a rat model of recurrent neonatal seizure. Front Mol Neurosci 2017, 10: 423.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gao Y, Luo C, Yao Y, Huang J, Fu H, Xia C, et al. IL-33 alleviated brain damage via anti-apoptosis, endoplasmic reticulum stress, and inflammation after epilepsy. Front Neurosci 2020, 14: 898.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Han RT, Vainchtein ID, Schlachetzki JCM, Cho FS, Dorman LC, Ahn E, et al. Microglial pattern recognition via IL-33 promotes synaptic refinement in developing corticothalamic circuits in mice. J Exp Med 2023, 220: e20220605.

    Article  CAS  PubMed  Google Scholar 

  77. He D, Xu H, Zhang H, Tang R, Lan Y, Xing R, et al. Disruption of the IL-33-ST2-AKT signaling axis impairs neurodevelopment by inhibiting microglial metabolic adaptation and phagocytic function. Immunity 2022, 55: 159-173.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kaplanski G. Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev 2018, 281: 138–153.

    Article  CAS  PubMed  Google Scholar 

  79. Nold-Petry CA, Lo CY, Rudloff I, Elgass KD, Li S, Gantier MP, et al. IL-37 requires the receptors IL-18Rα and IL-1R8 (SIGIRR) to carry out its multifaceted anti-inflammatory program upon innate signal transduction. Nat Immunol 2015, 16: 354–365.

    Article  CAS  PubMed  Google Scholar 

  80. Nold MF, Nold-Petry CA, Zepp JA, Palmer BE, Bufler P, Dinarello CA. IL-37 is a fundamental inhibitor of innate immunity. Nat Immunol 2010, 11: 1014–1022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Su Z, Tao X. Current understanding of IL-37 in human health and disease. Front Immunol 2021, 12: 696605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jeon GS, Park SK, Park SW, Kim DW, Chung CK, Cho SS. Glial expression of interleukin-18 and its receptor after excitotoxic damage in the mouse Hippocampus. Neurochem Res 2008, 33: 179–184.

    Article  CAS  PubMed  Google Scholar 

  83. Jung HK, Ryu HJ, Kim MJ, Kim WI, Choi HK, Choi HC, et al. Interleukin-18 attenuates disruption of brain-blood barrier induced by status epilepticus within the rat piriform cortex in interferon-γ independent pathway. Brain Res 2012, 1447: 126–134.

    Article  CAS  PubMed  Google Scholar 

  84. Ryu HJ, Kim JE, Kim MJ, Kwon HJ, Suh SW, Song HK, et al. The protective effects of interleukin-18 and interferon-γ on neuronal damages in the rat hippocampus following status epilepticus. Neuroscience 2010, 170: 711–721.

    Article  CAS  PubMed  Google Scholar 

  85. Mochol M, Taubøll E, Aukrust P, Ueland T, Andreassen OA, Svalheim S. Interleukin 18 (IL-18) and its binding protein (IL-18BP) are increased in patients with epilepsy suggesting low-grade systemic inflammation. Seizure 2020, 80: 221–225.

    Article  PubMed  Google Scholar 

  86. Liang R, Zheng L, Ji T, Zheng J, Liu J, Yuan C, et al. Elevated serum free IL-18 in neuropsychiatric systemic lupus erythematosus patients with seizure disorders. Lupus 2022, 31: 187–193.

    Article  CAS  PubMed  Google Scholar 

  87. Zafar A, Ikram A, Jillella DV, Kempuraj D, Khan MM, Bushnaq S, et al. Measurement of elevated IL-37 levels in acute ischemic brain injury: A cross-sectional pilot study. Cureus 2017, 9: e1767.

    PubMed  PubMed Central  Google Scholar 

  88. Zhang F, Zhu T, Li H, He Y, Zhang Y, Huang N, et al. Plasma interleukin-37 is elevated in acute ischemic stroke patients and probably associated with 3-month functional prognosis. Clin Interv Aging 2020, 15: 1285–1294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang Y, Xu C, Wang H, Nan S. Serum interleukin-37 increases in patients after ischemic stroke and is associated with stroke recurrence. Oxid Med Cell Longev 2021, 2021: 5546991.

    PubMed  PubMed Central  Google Scholar 

  90. Yuan ZC, Xu WD, Liu XY, Liu XY, Huang AF, Su LC. Biology of IL-36 signaling and its role in systemic inflammatory diseases. Front Immunol 2019, 10: 2532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Zare Rafie M, Esmaeilzadeh A, Ghoreishi A, Tahmasebi S, Faghihzadeh E, Elahi R. IL-38 as an early predictor of the ischemic stroke prognosis. Cytokine 2021, 146: 155626.

    Article  CAS  PubMed  Google Scholar 

  92. Leonard WJ, Lin JX, O’Shea JJ. The γc family of cytokines: Basic biology to therapeutic ramifications. Immunity 2019, 50: 832–850.

    Article  CAS  PubMed  Google Scholar 

  93. Boyman O, Sprent J. The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 2012, 12: 180–190.

    Article  CAS  PubMed  Google Scholar 

  94. Littman DR, Rudensky AY. Th17 and regulatory T cells in mediating and restraining inflammation. Cell 2010, 140: 845–858.

    Article  CAS  PubMed  Google Scholar 

  95. Mazumder AG, Patial V, Singh D. Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain Behav Immun 2019, 75: 84–93.

    Article  CAS  PubMed  Google Scholar 

  96. Surina NM, Fedotova IB, Nikolaev GM, Grechenko VV, Gankovskaya LV, Ogurtsova AD, et al. Neuroinflammation in pathogenesis of audiogenic epilepsy: Altered proinflammatory cytokine levels in the rats of krushinsky-molodkina seizure-prone strain. Biochemistry (Mosc) 2023, 88: 481–490.

    Article  CAS  PubMed  Google Scholar 

  97. Liu ZS, Wang QW, Wang FL, Yang LZ. Serum cytokine levels are altered in patients with West syndrome. Brain Dev 2001, 23: 548–551.

    Article  CAS  PubMed  Google Scholar 

  98. Sinha S, Patil SA, Jayalekshmy V, Satishchandra P. Do cytokines have any role in epilepsy? Epilepsy Res 2008, 82: 171–176.

    Article  CAS  PubMed  Google Scholar 

  99. Guo W, Zheng DH, Sun FJ, Yang JY, Zang ZL, Liu SY, et al. Expression and cellular distribution of the interleukin 2 signaling system in cortical lesions from patients with focal cortical dysplasia. J Neuropathol Exp Neurol 2014, 73: 206–222.

    Article  CAS  PubMed  Google Scholar 

  100. Shin HR, Chu K, Lee WJ, Lee HS, Kim EY, Son H, et al. Neuropsychiatric symptoms and seizure related with serum cytokine in epilepsy patients. Sci Rep 2022, 12: 7138.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Alvim MKM, Morita-Sherman ME, Yasuda CL, Rocha NP, Vieira ÉL, Pimentel-Silva LR, et al. Inflammatory and neurotrophic factor plasma levels are related to epilepsy independently of etiology. Epilepsia 2021, 62: 2385–2394.

    Article  CAS  PubMed  Google Scholar 

  102. De Sarro G, Rotiroti D, Audino MG, Gratteri S, Nisticó G. Effects of interleukin-2 on various models of experimental epilepsy in DBA/2 mice. Neuroimmunomodulation 1994, 1: 361–369.

    Article  PubMed  Google Scholar 

  103. Zhou H, Wang N, Xu L, Huang H, Yu C. The efficacy of gastrodin in combination with folate and vitamin B12 on patients with epilepsy after stroke and its effect on HMGB-1, IL-2 and IL-6 serum levels. Exp Ther Med 2017, 14: 4801–4806.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. M Taalab Y, Mohammed WF, Helmy MA, Othman AAA, Darwish M, Hassan I, et al. Cannabis influences the putative cytokines-related pathway of epilepsy among Egyptian epileptic patients. Brain Sci 2019, 9: 332.

  105. Gadani SP, Cronk JC, Norris GT, Kipnis J. IL-4 in the brain: A cytokine to remember. J Immunol 2012, 189: 4213–4219.

    Article  CAS  PubMed  Google Scholar 

  106. Rosa DV, Rezende VB, Costa BS, Mudado F, Schütze M, Torres KC, et al. Circulating CD4 and CD8 T cells expressing pro-inflammatory cytokines in a cohort of mesial temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res 2016, 120: 1–6.

    Article  CAS  PubMed  Google Scholar 

  107. Sun FJ, Zhang CQ, Chen X, Wei YJ, Li S, Liu SY, et al. Downregulation of CD47 and CD200 in patients with focal cortical dysplasia type IIb and tuberous sclerosis complex. J Neuroinflammation 2016, 13: 85.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ahras-Sifi N, Laraba-Djebari F. Immunomodulatory and protective effects of interleukin-4 on the neuropathological alterations induced by a potassium channel blocker. J Neuroimmunol 2021, 355: 577549.

    Article  CAS  PubMed  Google Scholar 

  109. Li T, Zhai X, Jiang J, Song X, Han W, Ma J, et al. Intraperitoneal injection of IL-4/IFN-γ modulates the proportions of microglial phenotypes and improves epilepsy outcomes in a pilocarpine model of acquired epilepsy. Brain Res 2017, 1657: 120–129.

    Article  CAS  PubMed  Google Scholar 

  110. Chen X, Zhang J, Song Y, Yang P, Yang Y, Huang Z, et al. Deficiency of anti-inflammatory cytokine IL-4 leads to neural hyperexcitability and aggravates cerebral ischemia-reperfusion injury. Acta Pharm Sin B 2020, 10: 1634–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Radpour M, Khoshkroodian B, Asgari T, Pourbadie HG, Sayyah M. Interleukin 4 reduces brain hyperexcitability after traumatic injury by downregulating TNF-α, upregulating IL-10/TGF-β, and potential directing macrophage/microglia to the M2 anti-inflammatory phenotype. Inflammation 2023, 46: 1810–1831.

    Article  CAS  PubMed  Google Scholar 

  112. Chen D, Tang TX, Deng H, Yang XP, Tang ZH. Interleukin-7 biology and its effects on immune cells: Mediator of generation, differentiation, survival, and homeostasis. Front Immunol 2021, 12: 747324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Corfe SA, Paige CJ. The many roles of IL-7 in B cell development; Mediator of survival, proliferation and differentiation. Semin Immunol 2012, 24: 198–208.

    Article  CAS  PubMed  Google Scholar 

  114. Li S, Wang Z, Zhang G, Fu J, Zhang X. Interleukin-7 promotes lung-resident CD14+ monocytes activity in patients with lung squamous carcinoma. Int Immunopharmacol 2019, 67: 202–210.

    Article  CAS  PubMed  Google Scholar 

  115. Wang JQ, Yang HY, Shao X, Jiang XY, Li JM. Latent, early or late human Herpes virus-6B expression in adult mesial temporal lobe epilepsy: Association of virus life cycle with inflammatory cytokines in brain tissue and cerebral spinal fluid. Neuroscience 2022, 504: 21–32.

    Article  CAS  PubMed  Google Scholar 

  116. Wei J, Nie Q, Li F. Lamotrigine decreases MRP8 and IL-7 in rat models of intractable epilepsy secondary to focal cortical dysplasia. Exp Ther Med 2016, 12: 3694–3698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Noelle RJ, Nowak EC. Cellular sources and immune functions of interleukin-9. Nat Rev Immunol 2010, 10: 683–687.

    Article  CAS  PubMed  Google Scholar 

  118. Donninelli G, Saraf-Sinik I, Mazziotti V, Capone A, Grasso MG, Battistini L, et al. Interleukin-9 regulates macrophage activation in the progressive multiple sclerosis brain. J Neuroinflammation 2020, 17: 149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tan S, Shan Y, Lin Y, Liao S, Zhang B, Zeng Q, et al. Neutralization of interleukin-9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. FASEB J 2019, 33: 4376–4387.

    Article  CAS  PubMed  Google Scholar 

  120. Wang H, Wang X, Wang W, Chai W, Song W, Zhang H, et al. Interleukin-15 enhanced the survival of human γδT cells by regulating the expression of Mcl-1 in neuroblastoma. Cell Death Discov 2022, 8: 139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Patidar M, Yadav N, Dalai SK. Interleukin 15: A key cytokine for immunotherapy. Cytokine Growth Factor Rev 2016, 31: 49–59.

    Article  PubMed  Google Scholar 

  122. Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu J, et al. Tumor-conditional IL-15 pro-cytokine reactivates anti-tumor immunity with limited toxicity. Cell Res 2021, 31: 1190–1198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Li M, Li Z, Yao Y, Jin WN, Wood K, Liu Q, et al. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity. Proc Natl Acad Sci U S A 2017, 114: E396–E405.

    CAS  PubMed  Google Scholar 

  124. Lee GA, Lin TN, Chen CY, Mau SY, Huang WZ, Kao YC, et al. Interleukin 15 blockade protects the brain from cerebral ischemia-reperfusion injury. Brain Behav Immun 2018, 73: 562–570.

    Article  CAS  PubMed  Google Scholar 

  125. Quast I, Dvorscek AR, Pattaroni C, Steiner TM, McKenzie CI, Pitt C, et al. Interleukin-21, acting beyond the immunological synapse, independently controls T follicular helper and germinal center B cells. Immunity 2022, 55: 1414-1430.e5.

    Article  CAS  PubMed  Google Scholar 

  126. Long D, Chen Y, Wu H, Zhao M, Lu Q. Clinical significance and immunobiology of IL-21 in autoimmunity. J Autoimmun 2019, 99: 1–14.

    Article  CAS  PubMed  Google Scholar 

  127. Spolski R, Leonard WJ. Interleukin-21: A double-edged sword with therapeutic potential. Nat Rev Drug Discov 2014, 13: 379–395.

    Article  CAS  PubMed  Google Scholar 

  128. Xiong XY, Wang TG, Yang MH, Meng ZY, Yang QW, Wang FX. Interleukin-21 expression in hippocampal astrocytes is enhanced following kainic acid-induced seizures. Neurol Res 2016, 38: 151–157.

    Article  CAS  PubMed  Google Scholar 

  129. Rayasam A, Kijak JA, Kissel L, Choi YH, Kim T, Hsu M, et al. CXCL13 expressed on inflamed cerebral blood vessels recruit IL-21 producing TFH cells to damage neurons following stroke. J Neuroinflammation 2022, 19: 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Metcalfe RD, Putoczki TL, Griffin MDW. Structural understanding of interleukin 6 family cytokine signaling and targeted therapies: Focus on interleukin 11. Front Immunol 2020, 11: 1424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Jones SA, Jenkins BJ. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat Rev Immunol 2018, 18: 773–789.

    Article  CAS  PubMed  Google Scholar 

  132. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb Perspect Biol 2018, 10: a028415.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Gruol DL. IL-6 regulation of synaptic function in the CNS. Neuropharmacology 2015, 96: 42–54.

    Article  CAS  PubMed  Google Scholar 

  134. Erta M, Quintana A, Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci 2012, 8: 1254–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Uludag IF, Bilgin S, Zorlu Y, Tuna G, Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure 2013, 22: 457–461.

    Article  PubMed  Google Scholar 

  136. Uludag IF, Duksal T, Tiftikcioglu BI, Zorlu Y, Ozkaya F, Kirkali G. IL-1β, IL-6 and IL1Ra levels in temporal lobe epilepsy. Seizure 2015, 26: 22–25.

    Article  PubMed  Google Scholar 

  137. Numis AL, Foster-Barber A, Deng X, Rogers EE, Barkovich AJ, Ferriero DM, et al. Early changes in pro-inflammatory cytokine levels in neonates with encephalopathy are associated with remote epilepsy. Pediatr Res 2019, 86: 616–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Basnyat P, Peltola M, Raitanen J, Liimatainen S, Rainesalo S, Pesu M, et al. Elevated IL-6 plasma levels are associated with GAD antibodies-associated autoimmune epilepsy. Front Cell Neurosci 2023, 17: 1129907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Minami M, Kuraishi Y, Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun 1991, 176: 593–598.

    Article  CAS  PubMed  Google Scholar 

  140. Fisher J, Mizrahi T, Schori H, Yoles E, Levkovitch-Verbin H, Haggiag S, et al. Increased post-traumatic survival of neurons in IL-6-knockout mice on a background of EAE susceptibility. J Neuroimmunol 2001, 119: 1–9.

    Article  CAS  PubMed  Google Scholar 

  141. De Sarro G, Russo E, Ferreri G, Giuseppe B, Flocco MA, Di Paola ED, et al. Seizure susceptibility to various convulsant stimuli of knockout interleukin-6 mice. Pharmacol Biochem Behav 2004, 77: 761–766.

    Article  PubMed  Google Scholar 

  142. Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001, 102: 805–818.

    Article  CAS  PubMed  Google Scholar 

  143. Kalueff AV, Lehtimaki KA, Ylinen A, Honkaniemi J, Peltola J. Intranasal administration of human IL-6 increases the severity of chemically induced seizures in rats. Neurosci Lett 2004, 365: 106–110.

    Article  CAS  PubMed  Google Scholar 

  144. Samland H, Huitron-Resendiz S, Masliah E, Criado J, Henriksen SJ, Campbell IL. Profound increase in sensitivity to glutamatergic- but not cholinergic agonist-induced seizures in transgenic mice with astrocyte production of IL-6. J Neurosci Res 2003, 73: 176–187.

    Article  CAS  PubMed  Google Scholar 

  145. Levin SG, Godukhin OV. Modulating effect of cytokines on mechanisms of synaptic plasticity in the brain. Biochemistry Moscow 2017, 82: 264–274.

    Article  CAS  PubMed  Google Scholar 

  146. Samuelsson AM, Jennische E, Hansson HA, Holmäng A. Prenatal exposure to interleukin-6 results in inflammatory neurodegeneration in hippocampus with NMDA/GABA(A) dysregulation and impaired spatial learning. Am J Physiol Regul Integr Comp Physiol 2006, 290: R1345–R1356.

    Article  CAS  PubMed  Google Scholar 

  147. Pineda E, Shin D, You SJ, Auvin S, Sankar R, Mazarati A. Maternal immune activation promotes hippocampal kindling epileptogenesis in mice. Ann Neurol 2013, 74: 11–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Cook SA, Schafer S. Hiding in plain sight: Interleukin-11 emerges as a master regulator of fibrosis, tissue integrity, and stromal inflammation. Annu Rev Med 2020, 71: 263–276.

    Article  CAS  PubMed  Google Scholar 

  149. Maheshwari A, Janssens K, Bogie J, van Den Haute C, Struys T, Lambrichts I, et al. Local overexpression of interleukin-11 in the central nervous system limits demyelination and enhances remyelination. Mediators Inflamm 2013, 2013: 685317.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Rosell DR, Nacher J, Akama KT, McEwen BS. Spatiotemporal distribution of gp130 cytokines and their receptors after status epilepticus: Comparison with neuronal degeneration and microglial activation. Neuroscience 2003, 122: 329–348.

    Article  CAS  PubMed  Google Scholar 

  151. Anderson KD, Panayotatos N, Corcoran TL, Lindsay RM, Wiegand SJ. Ciliary neurotrophic factor protects striatal output neurons in an animal model of Huntington disease. Proc Natl Acad Sci U S A 1996, 93: 7346–7351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Kazim SF, Iqbal K. Neurotrophic factor small-molecule mimetics mediated neuroregeneration and synaptic repair: Emerging therapeutic modality for Alzheimer’s disease. Mol Neurodegener 2016, 11: 50.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Di Marco A, Gloaguen I, Graziani R, Paonessa G, Saggio I, Hudson KR, et al. Identification of ciliary neurotrophic factor (CNTF) residues essential for leukemia inhibitory factor receptor binding and generation of CNTF receptor antagonists. Proc Natl Acad Sci U S A 1996, 93: 9247–9252.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Meazza C, Di Marco A, Fruscella P, Gloaguen I, Laufer R, Sironi M, et al. Centrally mediated inhibition of local inflammation by ciliary neurotrophic factor. Neuroimmunomodulation 1997, 4: 271–276.

    Article  CAS  PubMed  Google Scholar 

  155. Shpak A, Guekht A, Druzhkova T, Rider F, Gudkova A, Gulyaeva N. Increased ciliary neurotrophic factor in blood serum and lacrimal fluid as a potential biomarkers of focal epilepsy. Neurol Sci 2022, 43: 493–498.

    Article  PubMed  Google Scholar 

  156. Jankowsky JL, Patterson PH. Differential regulation of cytokine expression following pilocarpine-induced seizure. Exp Neurol 1999, 159: 333–346.

    Article  CAS  PubMed  Google Scholar 

  157. Talbott JF, Cao Q, Bertram J, Nkansah M, Benton RL, Lavik E, et al. CNTF promotes the survival and differentiation of adult spinal cord-derived oligodendrocyte precursor cells in vitro but fails to promote remyelination in vivo. Exp Neurol 2007, 204: 485–489.

    Article  CAS  PubMed  Google Scholar 

  158. Bechstein M, Häussler U, Neef M, Hofmann HD, Kirsch M, Haas CA. CNTF-mediated preactivation of astrocytes attenuates neuronal damage and epileptiform activity in experimental epilepsy. Exp Neurol 2012, 236: 141–150.

    Article  CAS  PubMed  Google Scholar 

  159. Plun-Favreau H, Perret D, Diveu C, Froger J, Chevalier S, Lelièvre E, et al. Leukemia inhibitory factor (LIF), cardiotrophin-1, and oncostatin M share structural binding determinants in the immunoglobulin-like domain of LIF receptor. J Biol Chem 2003, 278: 27169–27179.

    Article  CAS  PubMed  Google Scholar 

  160. Abdul-Ghani M, Suen C, Jiang B, Deng Y, Weldrick JJ, Putinski C, et al. Cardiotrophin 1 stimulates beneficial myogenic and vascular remodeling of the heart. Cell Res 2017, 27: 1195–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Carneros D, Santamaría EM, Larequi E, Vélez-Ortiz JM, Reboredo M, Mancheño U, et al. Cardiotrophin-1 is an anti-inflammatory cytokine and promotes IL-4-induced M2 macrophage polarization. FASEB J 2019, 33: 7578–7587.

    Article  CAS  PubMed  Google Scholar 

  162. Zhang C, Liu J, Wang J, Hu W, Feng Z. The emerging role of leukemia inhibitory factor in cancer and therapy. Pharmacol Ther 2021, 221: 107754.

    Article  CAS  PubMed  Google Scholar 

  163. Guo D, Dong W, Cong Y, Liu Y, Liang Y, Ye Z, et al. LIF aggravates pulpitis by promoting inflammatory response in macrophages. Inflammation 2023, https://doi.org/10.1007/s10753-023-01910-6.

    Article  PubMed  Google Scholar 

  164. Wahl AF, Wallace PM. Oncostatin M in the anti-inflammatory response. Ann Rheum Dis 2001, 60: iii75–iii80.

  165. West NR, Hegazy AN, Owens BMJ, Bullers SJ, Linggi B, Buonocore S, et al. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor-neutralizing therapy in patients with inflammatory bowel disease. Nat Med 2017, 23: 579–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lehtimäki KA, Peltola J, Koskikallio E, Keränen T, Honkaniemi J. Expression of cytokines and cytokine receptors in the rat brain after kainic acid-induced seizures. Brain Res Mol Brain Res 2003, 110: 253–260.

    Article  PubMed  Google Scholar 

  167. Minami M, Maekawa K, Yamakuni H, Katayama T, Nakamura J, Satoh M. Kainic acid induces leukemia inhibitory factor mRNA expression in the rat brain: Differences in the time course of mRNA expression between the dentate gyrus and hippocampal CA1/CA3 subfields. Brain Res Mol Brain Res 2002, 107: 39–46.

    Article  CAS  PubMed  Google Scholar 

  168. Holmberg KH, Patterson PH. Leukemia inhibitory factor is a key regulator of astrocytic, microglial and neuronal responses in a low-dose pilocarpine injury model. Brain Res 2006, 1075: 26–35.

    Article  CAS  PubMed  Google Scholar 

  169. Shu X, Du S, Chen X, Li Z. Transplantation of neural stem cells overexpressing cardiotrophin-1 inhibits sprouting of hippocampal mossy fiber in a rat model of status epilepticus. Cell Biochem Biophys 2011, 61: 367–370.

    Article  CAS  PubMed  Google Scholar 

  170. Moidunny S, Dias RB, Wesseling E, Sekino Y, Boddeke HW, Sebastião AM, et al. Interleukin-6-type cytokines in neuroprotection and neuromodulation: Oncostatin M, but not leukemia inhibitory factor, requires neuronal adenosine A1 receptor function. J Neurochem 2010, 114: 1667–1677.

    Article  CAS  PubMed  Google Scholar 

  171. Slaets H, Nelissen S, Janssens K, Vidal PM, Lemmens E, Stinissen P, et al. Oncostatin M reduces lesion size and promotes functional recovery and neurite outgrowth after spinal cord injury. Mol Neurobiol 2014, 50: 1142–1151.

    Article  CAS  PubMed  Google Scholar 

  172. Weiss TW, Samson AL, Niego B, Daniel PB, Medcalf RL. Oncostatin M is a neuroprotective cytokine that inhibits excitotoxic injury in vitro and in vivo. FASEB J 2006, 20: 2369–2371.

    Article  CAS  PubMed  Google Scholar 

  173. Datsi A, Steinhoff M, Ahmad F, Alam M, Buddenkotte J. Interleukin-31: The itchy cytokine in inflammation and therapy. Allergy 2021, 76: 2982–2997.

    Article  CAS  PubMed  Google Scholar 

  174. Stott B, Lavender P, Lehmann S, Pennino D, Durham S, Schmidt-Weber CB. Human IL-31 is induced by IL-4 and promotes TH2-driven inflammation. J Allergy Clin Immunol 2013, 132: 446–54.e5.

    Article  CAS  PubMed  Google Scholar 

  175. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W. Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 2008, 19: 347–356.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ouyang W, O’Garra A. IL-10 family cytokines IL-10 and IL-22: From basic science to clinical translation. Immunity 2019, 50: 871–891.

    Article  CAS  PubMed  Google Scholar 

  177. Alsharafi WA, Xiao B, Abuhamed MM, Bi FF, Luo ZH. Correlation between IL-10 and microRNA-187 expression in epileptic rat Hippocampus and patients with temporal lobe epilepsy. Front Cell Neurosci 2015, 9: 466.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Sun Y, Ma J, Li D, Li P, Zhou X, Li Y, et al. Interleukin-10 inhibits interleukin-1β production and inflammasome activation of microglia in epileptic seizures. J Neuroinflammation 2019, 16: 66.

    Article  PubMed  PubMed Central  Google Scholar 

  179. Kocatürk M, Kirmit A. Evaluation of IL-10, IFN-γ, and thiol-disulfide homeostasis in patients with drug-resistant epilepsy. Neurol Sci 2022, 43: 485–492.

    Article  PubMed  Google Scholar 

  180. Basnyat P, Pesu M, Söderqvist M, Grönholm A, Liimatainen S, Peltola M, et al. Chronically reduced IL-10 plasma levels are associated with hippocampal sclerosis in temporal lobe epilepsy patients. BMC Neurol 2020, 20: 241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Ruffolo G, Alfano V, Romagnolo A, Zimmer T, Mills JD, Cifelli P, et al. GABAA receptor function is enhanced by Interleukin-10 in human epileptogenic gangliogliomas and its effect is counteracted by Interleukin-1β. Sci Rep 2022, 12: 17956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Piepke M, Clausen BH, Ludewig P, Vienhues JH, Bedke T, Javidi E, et al. Interleukin-10 improves stroke outcome by controlling the detrimental Interleukin-17A response. J Neuroinflammation 2021, 18: 265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Rutz S, Wang X, Ouyang W. The IL-20 subfamily of cytokines—from host defence to tissue homeostasis. Nat Rev Immunol 2014, 14: 783–795.

    Article  CAS  PubMed  Google Scholar 

  184. de Vries EE, van den Munckhof B, Braun KP, van Royen-Kerkhof A, de Jager W, Jansen FE. Inflammatory mediators in human epilepsy: A systematic review and meta-analysis. Neurosci Biobehav Rev 2016, 63: 177–190.

    Article  PubMed  Google Scholar 

  185. Ouédraogo O, Rébillard RM, Jamann H, Mamane VH, Clénet ML, Daigneault A, et al. Increased frequency of proinflammatory CD4 T cells and pathological levels of serum neurofilament light chain in adult drug-resistant epilepsy. Epilepsia 2021, 62: 176–189.

    Article  PubMed  Google Scholar 

  186. Talebian A, Hassani F, Nikoueinejad H, Akbari H. Investigating the relationship between serum levels of interleukin-22 and interleukin-1 beta with febrile seizure. Iran J Allergy Asthma Immunol 2020, 19: 409–415.

    PubMed  Google Scholar 

  187. Gallagher G, Eskdale J, Jordan W, Peat J, Campbell J, Boniotto M, et al. Human interleukin-19 and its receptor: A potential role in the induction of Th2 responses. Int Immunopharmacol 2004, 4: 615–626.

    Article  CAS  PubMed  Google Scholar 

  188. Oral HB, Kotenko SV, Yilmaz M, Mani O, Zumkehr J, Blaser K, et al. Regulation of T cells and cytokines by the interleukin-10 (IL-10)-family cytokines IL-19, IL-20, IL-22, IL-24 and IL-26. Eur J Immunol 2006, 36: 380–388.

    Article  CAS  PubMed  Google Scholar 

  189. Xie W, Fang L, Gan S, Xuan H. Interleukin-19 alleviates brain injury by anti-inflammatory effects in a mice model of focal cerebral ischemia. Brain Res 2016, 1650: 172–177.

    Article  CAS  PubMed  Google Scholar 

  190. Hsu YH, Yang YY, Huwang MH, Weng YH, Jou IM, Wu PT, et al. Anti-IL-20 monoclonal antibody inhibited inflammation and protected against cartilage destruction in murine models of osteoarthritis. PLoS One 2017, 12: e0175802.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Chen WY, Chang MS. IL-20 is regulated by hypoxia-inducible factor and up-regulated after experimental ischemic stroke. J Immunol 2009, 182: 5003–5012.

    Article  CAS  PubMed  Google Scholar 

  192. Hsu YH, Lin RM, Chiu YS, Liu WL, Huang KY. Effects of IL-1β, IL-20, and BMP-2 on intervertebral disc inflammation under hypoxia. J Clin Med 2020, 9: E140.

    Article  Google Scholar 

  193. Zhong Y, Zhang X, Chong W. Interleukin-24 immunobiology and its roles in inflammatory diseases. Int J Mol Sci 2022, 23: 627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Corvaisier M, Delneste Y, Jeanvoine H, Preisser L, Blanchard S, Garo E, et al. IL-26 is overexpressed in rheumatoid arthritis and induces proinflammatory cytokine production and Th17 cell generation. PLoS Biol 2012, 10: e1001395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Vignali DAA, Kuchroo VK. IL-12 family cytokines: Immunological playmakers. Nat Immunol 2012, 13: 722–728.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: Related but functionally distinct regulators of inflammation. Annu Rev Immunol 2007, 25: 221–242.

    Article  CAS  PubMed  Google Scholar 

  197. Turrin NP, Rivest S. Innate immune reaction in response to seizures: Implications for the neuropathology associated with epilepsy. Neurobiol Dis 2004, 16: 321–334.

    Article  CAS  PubMed  Google Scholar 

  198. Gillinder L, McCombe P, Powell T, Hartel G, Gillis D, Rojas IL, et al. Cytokines as a marker of central nervous system autoantibody associated epilepsy. Epilepsy Res 2021, 176: 106708.

    Article  CAS  PubMed  Google Scholar 

  199. Sahin S, Uysal S, Yentur SP, Kacar A. Reduced cerebrospinal fluid levels of interleukin-10 in children with febrile seizures. Seizure 2019, 65: 94–97.

    Article  PubMed  Google Scholar 

  200. Sonobe Y, Yawata I, Kawanokuchi J, Takeuchi H, Mizuno T, Suzumura A. Production of IL-27 and other IL-12 family cytokines by microglia and their subpopulations. Brain Res 2005, 1040: 202–207.

    Article  CAS  PubMed  Google Scholar 

  201. Constantinescu CS, Tani M, Ransohoff RM, Wysocka M, Hilliard B, Fujioka T, et al. Astrocytes as antigen-presenting cells: Expression of IL-12/IL-23. J Neurochem 2005, 95: 331–340.

    Article  CAS  PubMed  Google Scholar 

  202. Zykov MV, Barbarash OL, Kashtalap VV, Kutikhin AG, Barbarash LS. Interleukin-12 serum level has prognostic value in patients with ST-segment elevation myocardial infarction. Heart Lung 2016, 45: 336–340.

    Article  PubMed  Google Scholar 

  203. Zhu H, Hu S, Li Y, Sun Y, Xiong X, Hu X, et al. Interleukins and ischemic stroke. Front Immunol 2022, 13: 828447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Wang M, Zhong D, Zheng Y, Li H, Chen H, Ma S, et al. Damage effect of interleukin (IL)-23 on oxygen-glucose-deprived cells of the neurovascular unit via IL-23 receptor. Neuroscience 2015, 289: 406–416.

    Article  CAS  PubMed  Google Scholar 

  205. Gelderblom M, Gallizioli M, Ludewig P, Thom V, Arunachalam P, Rissiek B, et al. IL-23 (interleukin-23)-producing conventional dendritic cells control the detrimental IL-17 (interleukin-17) response in stroke. Stroke 2018, 49: 155–164.

    Article  CAS  PubMed  Google Scholar 

  206. Zhong Q, Zhou K, Liang QL, Lin S, Wang YC, Xiong XY, et al. Interleukin-23 secreted by activated macrophages drives γδT cell production of interleukin-17 to aggravate secondary injury after intracerebral hemorrhage. J Am Heart Assoc 2016, 5: e004340.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Fan L, Zhou L. Anti-IL-23 exerted protective effects on cerebral ischemia-reperfusion injury through JAK2/STAT3 signaling pathway. Mol Biol Rep 2021, 48: 3475–3484.

    Article  CAS  PubMed  Google Scholar 

  208. Stumhofer JS, Hunter CA. Advances in understanding the anti-inflammatory properties of IL-27. Immunol Lett 2008, 117: 123–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Wojno ED, Hunter CA. New directions in the basic and translational biology of interleukin-27. Trends Immunol 2012, 33: 91–97.

    Article  CAS  PubMed  Google Scholar 

  210. Collison LW, Vignali DAA. Interleukin-35: Odd one out or part of the family? Immunol Rev 2008, 226: 248–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Casella G, Finardi A, Descamps H, Colombo F, Maiorino C, Ruffini F, et al. IL-27, but not IL-35, inhibits neuroinflammation through modulating GM-CSF expression. Sci Rep 2017, 7: 16547.

    Article  PubMed  PubMed Central  Google Scholar 

  212. Luo C, Li B, Chen L, Zhao L, Wei Y. IL-27 protects the brain from ischemia-reperfusion injury via the gp130/STAT3 signaling pathway. J Mol Neurosci 2021, 71: 1838–1848.

    Article  CAS  PubMed  Google Scholar 

  213. Xu C, Zhu H, Shen R, Feng Q, Zhou H, Zhao Z. IL-35 is a protective immunomodulator in brain ischemic injury in mice. Neurochem Res 2018, 43: 1454–1463.

    Article  CAS  PubMed  Google Scholar 

  214. Qian L, Li M, Lin X, Teng H, Yu L, Jiang M. Interleukin-35 attenuates blood-brain barrier dysfunction caused by cerebral ischemia-reperfusion injury through inhibiting brain endothelial cell injury. Ann Transl Med 2022, 10: 776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. An J, Li H, Xia D, Xu B, Wang J, Qiu H, et al. The role of interleukin-17 in epilepsy. Epilepsy Res 2022, 186: 107001.

    Article  CAS  PubMed  Google Scholar 

  216. Adamopoulos IE, Kuchroo V. IL-17A and IL-17F in tissue homeostasis, inflammation and regeneration. Nat Rev Rheumatol 2023, 19: 535–536.

    Article  CAS  PubMed  Google Scholar 

  217. Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 2008, 226: 57–79.

    Article  CAS  PubMed  Google Scholar 

  218. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, et al. Differential roles of interleukin-17A and-17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 2009, 30: 108–119.

    Article  CAS  PubMed  Google Scholar 

  219. Liu Y, Shao Z, Shangguan G, Bie Q, Zhang B. Biological properties and the role of IL-25 in disease pathogenesis. J Immunol Res 2018, 2018: 6519465.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Qian Y, Liu C, Hartupee J, Altuntas CZ, Gulen MF, Jane-Wit D, et al. The adaptor Act1 is required for interleukin 17-dependent signaling associated with autoimmune and inflammatory disease. Nat Immunol 2007, 8: 247–256.

    Article  CAS  PubMed  Google Scholar 

  221. McGeachy MJ, Cua DJ, Gaffen SL. The IL-17 family of cytokines in health and disease. Immunity 2019, 50: 892–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Kawanokuchi J, Shimizu K, Nitta A, Yamada K, Mizuno T, Takeuchi H, et al. Production and functions of IL-17 in microglia. J Neuroimmunol 2008, 194: 54–61.

    Article  CAS  PubMed  Google Scholar 

  223. Gelderblom M, Weymar A, Bernreuther C, Velden J, Arunachalam P, Steinbach K, et al. Neutralization of the IL-17 axis diminishes neutrophil invasion and protects from ischemic stroke. Blood 2012, 120: 3793–3802.

    Article  CAS  PubMed  Google Scholar 

  224. Luo H, Liu HZ, Zhang WW, Matsuda M, Lv N, Chen G, et al. Interleukin-17 regulates neuron-glial communications, synaptic transmission, and neuropathic pain after chemotherapy. Cell Rep 2019, 29: 2384-2397.e5.

    Article  CAS  PubMed  Google Scholar 

  225. Chang SH, Dong C. IL-17F: Regulation, signaling and function in inflammation. Cytokine 2009, 46: 7–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Yang XO, Chang SH, Park H, Nurieva R, Shah B, Acero L, et al. Regulation of inflammatory responses by IL-17F. J Exp Med 2008, 205: 1063–1075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Yang XO, Nurieva R, Martinez GJ, Kang HS, Chung Y, Pappu BP, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity 2008, 29: 44–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  228. Mao LY, Ding J, Peng WF, Ma Y, Zhang YH, Fan W, et al. Interictal interleukin-17A levels are elevated and correlate with seizure severity of epilepsy patients. Epilepsia 2013, 54: e142–e145.

    Article  CAS  PubMed  Google Scholar 

  229. Wang Y, Wang D, Guo D. Interictal cytokine levels were correlated to seizure severity of epileptic patients: A retrospective study on 1218 epileptic patients. J Transl Med 2015, 13: 378.

    Article  PubMed  PubMed Central  Google Scholar 

  230. He JJ, Li S, Shu HF, Yu SX, Liu SY, Yin Q, et al. The interleukin 17 system in cortical lesions in focal cortical dysplasias. J Neuropathol Exp Neurol 2013, 72: 152–163.

    Article  CAS  PubMed  Google Scholar 

  231. He JJ, Wu KF, Li S, Shu HF, Zhang CQ, Liu SY, et al. Expression of the interleukin 17 in cortical tubers of the tuberous sclerosis complex. J Neuroimmunol 2013, 262: 85–91.

    Article  CAS  PubMed  Google Scholar 

  232. He JJ, Sun FJ, Wang Y, Luo XQ, Lei P, Zhou J, et al. Increased expression of interleukin 17 in the cortex and hippocampus from patients with mesial temporal lobe epilepsy. J Neuroimmunol 2016, 298: 153–159.

    Article  CAS  PubMed  Google Scholar 

  233. Xu D, Robinson AP, Ishii T, Duncan DS, Alden TD, Goings GE, et al. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 2018, 215: 1169–1186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Rahman MT, Ghosh C, Hossain M, Linfield D, Rezaee F, Janigro D, et al. IFN-γ, IL-17A, or zonulin rapidly increase the permeability of the blood-brain and small intestinal epithelial barriers: Relevance for neuro-inflammatory diseases. Biochem Biophys Res Commun 2018, 507: 274–279.

    Article  CAS  PubMed  Google Scholar 

  235. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 2007, 13: 1173–1175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Huppert J, Closhen D, Croxford A, White R, Kulig P, Pietrowski E, et al. Cellular mechanisms of IL-17-induced blood-brain barrier disruption. FASEB J 2010, 24: 1023–1034.

    Article  CAS  PubMed  Google Scholar 

  237. Koshal P, Jamwal S, Kumar P. Glucagon-like Peptide-1 (GLP-1) and neurotransmitters signaling in epilepsy: An insight review. Neuropharmacology 2018, 136: 271–279.

    Article  CAS  PubMed  Google Scholar 

  238. Kostic M, Zivkovic N, Cvetanovic A, Stojanovic I, Colic M. IL-17 signalling in astrocytes promotes glutamate excitotoxicity: Indications for the link between inflammatory and neurodegenerative events in multiple sclerosis. Mult Scler Relat Disord 2017, 11: 12–17.

    Article  PubMed  Google Scholar 

  239. Deng C, Peng N, Tang Y, Yu N, Wang C, Cai X, et al. Roles of IL-25 in type 2 inflammation and autoimmune pathogenesis. Front Immunol 2021, 12: 691559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bie Q, Jin C, Zhang B, Dong H. IL-17B: A new area of study in the IL-17 family. Mol Immunol 2017, 90: 50–56.

    Article  CAS  PubMed  Google Scholar 

  241. Swedik S, Madola A, Levine A. IL-17C in human mucosal immunity: More than just a middle child. Cytokine 2021, 146: 155641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Huang J, Lee HY, Zhao X, Han J, Su Y, Sun Q, et al. Interleukin-17D regulates group 3 innate lymphoid cell function through its receptor CD93. Immunity 2021, 54: 673-686.e4.

    Article  CAS  PubMed  Google Scholar 

  243. Lee Y, Clinton J, Yao C, Chang SH. Interleukin-17D promotes pathogenicity during infection by suppressing CD8 T cell activity. Front Immunol 2019, 10: 1172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Matsushima K, Yang, Oppenheim JJ. Interleukin-8: An evolving chemokine. Cytokine 2022, 153: 155828.

  245. Pernhorst K, Herms S, Hoffmann P, Cichon S, Schulz H, Sander T, et al. TLR4, ATF-3 and IL8 inflammation mediator expression correlates with seizure frequency in human epileptic brain tissue. Seizure 2013, 22: 675–678.

    Article  PubMed  Google Scholar 

  246. Billiau AD, Witters P, Ceulemans B, Kasran A, Wouters C, Lagae L. Intravenous immunoglobulins in refractory childhood-onset epilepsy: Effects on seizure frequency, EEG activity, and cerebrospinal fluid cytokine profile. Epilepsia 2007, 48: 1739–1749.

    Article  CAS  PubMed  Google Scholar 

  247. Strauss KI, Elisevich KV. Brain region and epilepsy-associated differences in inflammatory mediator levels in medically refractory mesial temporal lobe epilepsy. J Neuroinflammation 2016, 13: 270.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Gallentine WB, Shinnar S, Hesdorffer DC, Epstein L, Nordli DR Jr, Lewis DV, et al. Plasma cytokines associated with febrile status epilepticus in children: A potential biomarker for acute hippocampal injury. Epilepsia 2017, 58: 1102–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Česká K, Papež J, Ošlejšková H, Slabý O, Radová L, Loja T, et al. CCL2/MCP-1, interleukin-8, and fractalkine/CXC3CL1: Potential biomarkers of epileptogenesis and pharmacoresistance in childhood epilepsy. Eur J Paediatr Neurol 2023, 46: 48–54.

    Article  PubMed  Google Scholar 

  250. Di Sapia R, Zimmer TS, Kebede V, Balosso S, Ravizza T, Sorrentino D, et al. CXCL1-CXCR1/2 signaling is induced in human temporal lobe epilepsy and contributes to seizures in a murine model of acquired epilepsy. Neurobiol Dis 2021, 158: 105468.

    Article  PubMed  Google Scholar 

  251. Li S, Olde Heuvel F, Rehman R, Aousji O, Froehlich A, Li Z, et al. Interleukin-13 and its receptor are synaptic proteins involved in plasticity and neuroprotection. Nat Commun 2023, 14: 200.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Bieber T. Interleukin-13: Targeting an underestimated cytokine in atopic dermatitis. Allergy 2020, 75: 54–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This review was supported by grants from the National Natural Science Foundation of China (82003729) and the Natural Science Foundation of Shandong Province (ZR2022QH144 and ZR2020QH357).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuan Dong or Ying Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Zhang, X. & Wang, Y. Interleukins in Epilepsy: Friend or Foe. Neurosci. Bull. (2024). https://doi.org/10.1007/s12264-023-01170-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12264-023-01170-2

Keywords

Navigation