Skip to main content

Advertisement

Log in

Cognitive, Emotional, and Other Non-motor Symptoms of Spinocerebellar Ataxias

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Spinocerebellar ataxias (SCAs) are autosomal dominant degenerative syndromes that present with ataxia and brain stem abnormalities. This review describes the cognitive and behavioral symptoms of SCAs in the context of recent knowledge of the role of the cerebellum in higher intellectual function.

Recent Findings

Recent studies suggest that patients with spinocerebellar ataxia can display cognitive deficits even early in the disease. These have been given the term cerebellar cognitive affective syndrome (CCAS). CCAS can be tracked using newly developed rating scales. In addition, patients with spinocerebellar ataxia also display impulsive and compulsive behavior, depression, anxiety, fatigue, and sleep disturbances.

Summary

This review stresses the importance of recognizing non-motor symptoms in SCAs. There is a pressing need for novel therapeutic interventions to address these symptoms given their deleterious impact on patients’ quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Primers. 2019;5(1):24. https://doi.org/10.1038/s41572-019-0074-3.

    Article  PubMed  Google Scholar 

  2. Sullivan R, Yau WY, O'Connor E, Houlden H. Spinocerebellar ataxia: an update. J Neurol. 2019;266(2):533–44. https://doi.org/10.1007/s00415-018-9076-4.

    Article  PubMed  Google Scholar 

  3. Jang M, Kim HJ, Kim A, Jeon B. Urinary symptoms and urodynamic findings in patients with spinocerebellar ataxia. Cerebellum. 2020;19(4):483–6. https://doi.org/10.1007/s12311-020-01126-6.

    Article  CAS  PubMed  Google Scholar 

  4. Afonso Ribeiro J, Simeoni S, De Min L, et al. Lower urinary tract and bowel dysfunction in spinocerebellar ataxias. Ann Clin Transl Neurol. 2021;8(2):321–31. https://doi.org/10.1002/acn3.51266.

    Article  CAS  PubMed  Google Scholar 

  5. Braga-Neto P, Felicio AC, Pedroso JL, et al. Clinical correlates of olfactory dysfunction in spinocerebellar ataxia type 3. Parkinsonism Relat Disord. 2011;17(5):353–6. https://doi.org/10.1016/j.parkreldis.2011.02.004.

    Article  CAS  PubMed  Google Scholar 

  6. Connelly T, Farmer JM, Lynch DR, Doty RL. Olfactory dysfunction in degenerative ataxias. J Neurol Neurosurg Psychiatry. 2003;74(10):1435. https://doi.org/10.1136/jnnp.74.10.1435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Moscovich M, Munhoz RP, Teive HA, et al. Olfactory impairment in familial ataxias. J Neurol Neurosurg Psychiatry. 2012;83(10):970–4. https://doi.org/10.1136/jnnp-2012-302770.

    Article  PubMed  Google Scholar 

  8. Agarwal A, Kaur H, Agarwal A, et al. Cognitive impairment in spinocerebellar ataxia type 12. Parkinsonism Relat Disord. 2021;85:52–6. https://doi.org/10.1016/j.parkreldis.2021.03.010.

    Article  CAS  PubMed  Google Scholar 

  9. Bürk K, Globas C, Bösch S, et al. Cognitive deficits in spinocerebellar ataxia 2. Brain. 1999;122(Pt 4):769–77. https://doi.org/10.1093/brain/122.4.769.

    Article  PubMed  Google Scholar 

  10. De Michele G, Galatolo D, Barghigiani M, et al. Spinocerebellar ataxia type 48: last but not least. Neurol Sci. 2020;41(9):2423–32. https://doi.org/10.1007/s10072-020-04408-3.

    Article  PubMed  Google Scholar 

  11. Groth CL, Berman BD. Spinocerebellar ataxia 27: a review and characterization of an evolving phenotype. Tremor Other Hyperkinet Mov (N Y). 2018;8:534. https://doi.org/10.7916/d80s0zjq.

    Article  PubMed  Google Scholar 

  12. Hekman KE, Gomez CM. The autosomal dominant spinocerebellar ataxias: emerging mechanistic themes suggest pervasive Purkinje cell vulnerability. J Neurol Neurosurg Psychiatry. 2015;86(5):554–61. https://doi.org/10.1136/jnnp-2014-308421.

    Article  PubMed  Google Scholar 

  13. Nakamura K, Jeong SY, Uchihara T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet. 2001;10(14):1441–8. https://doi.org/10.1093/hmg/10.14.1441.

    Article  CAS  PubMed  Google Scholar 

  14. Schelhaas HJ, van de Warrenburg BP. Clinical, psychological, and genetic characteristics of spinocerebellar ataxia type 19 (SCA19). Cerebellum. 2005;4(1):51–4. https://doi.org/10.1080/14734220510007888.

    Article  CAS  PubMed  Google Scholar 

  15. Teive HAG, Arruda WO. Cognitive dysfunction in spinocerebellar ataxias. Dement Neuropsychol. 2009;3(3):180–7. https://doi.org/10.1590/s1980-57642009dn30300002.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Walker LA, Bourque P, Smith AM, Warman CJ. Autosomal dominant cerebellar ataxia, deafness, and narcolepsy (ADCA-DN) associated with progressive cognitive and behavioral deterioration. Neuropsychology. 2017;31(3):292–303. https://doi.org/10.1037/neu0000322.

    Article  PubMed  Google Scholar 

  17. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121(Pt 4):561–79. https://doi.org/10.1093/brain/121.4.561.

    Article  PubMed  Google Scholar 

  18. Schmahmann JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004;16(3):367–78. https://doi.org/10.1176/jnp.16.3.367.

    Article  PubMed  Google Scholar 

  19. •• GPD A, van Dun K, Adamaszek M, et al. The cerebellar cognitive affective/Schmahmann syndrome: a task force paper. Cerebellum. 2020;19(1):102–25. https://doi.org/10.1007/s12311-019-01068-8. This consensus paper summarizes a constellation of important symptoms and neuroimaigng findings in the cerebellar cognitive affective syndrome.

    Article  CAS  Google Scholar 

  20. Ahmadian N, van Baarsen K, van Zandvoort M, Robe PA. The cerebellar cognitive affective syndrome—a meta-analysis. The Cerebellum. 2019;18(5):941–50. https://doi.org/10.1007/s12311-019-01060-2.

    Article  PubMed  Google Scholar 

  21. Kano M, Watanabe M. Chapter 4 - Cerebellar circuits. In: Rubenstein J, Rakic P, Chen B, Kwan KY, editors. Neural Circuit and Cognitive Development (Second Edition). Academic Press; 2020. p. 79–102.

    Chapter  Google Scholar 

  22. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75. https://doi.org/10.1016/j.neulet.2018.07.005.

    Article  CAS  PubMed  Google Scholar 

  23. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44(2):489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039.

    Article  PubMed  Google Scholar 

  24. De la Cruz Córdoba EA, González Medrano JA, Herrera Mora P, et al. Cerebellar cognitive affective syndrome in mexican pediatric patients with ataxia-telangiectasia. Cerebellum. 2023; https://doi.org/10.1007/s12311-023-01529-1.

  25. Destrebecq V, Comet C, Deveylder F, Alaerts N, Naeije G. Determinant of the cerebellar cognitive affective syndrome in Friedreich’s ataxia. J Neurol. 2023;270(6):2969–74. https://doi.org/10.1007/s00415-023-11623-3.

    Article  CAS  PubMed  Google Scholar 

  26. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2018;141(1):248–70. https://doi.org/10.1093/brain/awx317.

    Article  PubMed  Google Scholar 

  27. Maas R, Killaars S, van de Warrenburg BPC, Schutter D. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol. 2021;268(9):3456–66. https://doi.org/10.1007/s00415-021-10516-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Palvadeau R, Kaya-Güleç ZE, Şimşir G, et al. Cerebellar cognitive-affective syndrome preceding ataxia associated with complex extrapyramidal features in a Turkish SCA48 family. Neurogenetics. 2020;21(1):51–8. https://doi.org/10.1007/s10048-019-00595-0.

    Article  CAS  PubMed  Google Scholar 

  29. de Oliveira Scott SS, Pedroso JL, Elias VV, et al. Translation, cross-cultural adaptation, and validation to Brazilian Portuguese of the Cerebellar Cognitive Affective/Schmahmann Syndrome Scale. Cerebellum. 2023;22(2):282–94. https://doi.org/10.1007/s12311-022-01391-7.

    Article  PubMed  Google Scholar 

  30. Thieme A, Roeske S, Faber J, et al. Validation of a German version of the Cerebellar Cognitive Affective/ Schmahmann Syndrome Scale: preliminary version and study protocol. Neurol Res Pract. 2020;2:39. https://doi.org/10.1186/s42466-020-00071-3.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Carta I, Chen CH, Schott AL, Dorizan S, Khodakhah K. Cerebellar modulation of the reward circuitry and social behavior. Science. 2019;363(6424) https://doi.org/10.1126/science.aav0581.

  32. Cutando L, Puighermanal E, Castell L, et al. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci. 2022;25(7):900–11. https://doi.org/10.1038/s41593-022-01092-8.

    Article  CAS  PubMed  Google Scholar 

  33. Heffley W, Song EY, Xu Z, et al. Coordinated cerebellar climbing fiber activity signals learned sensorimotor predictions. Nat Neurosci. 2018;21(10):1431–41. https://doi.org/10.1038/s41593-018-0228-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Larry N, Yarkoni M, Lixenberg A, Joshua M. Cerebellar climbing fibers encode expected reward size. Elife. 2019;8:e46870. https://doi.org/10.7554/eLife.46870.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ohmae S, Medina JF. Climbing fibers encode a temporal-difference prediction error during cerebellar learning in mice. Nat Neurosci. 2015;18(12):1798–803. https://doi.org/10.1038/nn.4167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Peterson TC, Villatoro L, Arneson T, Ahuja B, Voss S, Swain RA. Behavior modification after inactivation of cerebellar dentate nuclei. Behav Neurosci. 2012;126(4):551–62. https://doi.org/10.1037/a0028701.

    Article  PubMed  Google Scholar 

  37. • Sendhilnathan N, Semework M, Goldberg ME, Ipata AE. Neural Correlates of Reinforcement Learning in Mid-lateral Cerebellum. Neuron. 2020;106(1):188–198.e5. https://doi.org/10.1016/j.neuron.2019.12.032. This article highlights the importance of cognitive cerebellum in reinforcement learning, an important process related to reward processing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tsutsumi S, Hidaka N, Isomura Y, et al. Modular organization of cerebellar climbing fiber inputs during goal-directed behavior. Elife. 2019;8 https://doi.org/10.7554/eLife.47021.

  39. Wagner MJ, Kim TH, Savall J, Schnitzer MJ, Luo L. Cerebellar granule cells encode the expectation of reward. Nature. 2017;544(7648):96–100. https://doi.org/10.1038/nature21726.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Holloway ZR, Paige NB, Comstock JF, Nolen HG, Sable HJ, Lester DB. Cerebellar modulation of mesolimbic dopamine transmission is functionally asymmetrical. Cerebellum. 2019;18(5):922–31. https://doi.org/10.1007/s12311-019-01074-w.

    Article  CAS  PubMed  Google Scholar 

  41. Snider RS, Maiti A, Snider SR. Cerebellar pathways to ventral midbrain and nigra. Exp Neurol. 1976;53(3):714–28. https://doi.org/10.1016/0014-4886(76)90150-3.

    Article  CAS  PubMed  Google Scholar 

  42. D'Mello AM, Stoodley CJ. Cerebro-cerebellar circuits in autism spectrum disorder. Front Neurosci. 2015;9:408. https://doi.org/10.3389/fnins.2015.00408.

    Article  PubMed  PubMed Central  Google Scholar 

  43. • Wagner MJ, Luo L. Neocortex-Cerebellum Circuits for Cognitive Processing. Trends Neurosci. 2020;43(1):42–54. https://doi.org/10.1016/j.tins.2019.11.002. This article provides evidence to support the neocortex-cerebellum circuit as a joint dynamic system both in classical sensorimotor contexts and reward-related, cognitive processing.

    Article  CAS  PubMed  Google Scholar 

  44. Kelley AE. Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-related learning. Neurosci Biobehav Rev. 2004;27(8):765–76. https://doi.org/10.1016/j.neubiorev.2003.11.015.

    Article  PubMed  Google Scholar 

  45. Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14(9):609–25. https://doi.org/10.1038/nrn3381.

    Article  CAS  PubMed  Google Scholar 

  46. Settell ML, Testini P, Cho S, et al. Functional circuitry effect of ventral tegmental area deep brain stimulation: imaging and neurochemical evidence of mesocortical and mesolimbic pathway modulation. Front Neurosci. 2017;11:104. https://doi.org/10.3389/fnins.2017.00104.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tzschentke TM. The medial prefrontal cortex as a part of the brain reward system. Amino Acids. 2000;19(1):211–9. https://doi.org/10.1007/s007260070051.

    Article  CAS  PubMed  Google Scholar 

  48. Wise RA, Rompre PP. Brain dopamine and reward. Annu Rev Psychol. 1989;40:191–225. https://doi.org/10.1146/annurev.ps.40.020189.001203.

    Article  CAS  PubMed  Google Scholar 

  49. •• Amokrane N, Viswanathan A, Freedman S, et al. Impulsivity in cerebellar ataxias: testing the cerebellar reward hypothesis in humans. Mov Disord. 2020;35(8):1491–3. https://doi.org/10.1002/mds.28121. This article reveals the human evidence of domain-specific impulsive and compulsive symptoms in individuals with dysfunctional cerebellum, suggesting that an intact cerebellum is important for normal reward system.

    Article  PubMed  PubMed Central  Google Scholar 

  50. • Chen TX, Lin CR, Aumann MA, et al. Impulsivity trait profiles in patients with cerebellar ataxia and Parkinson disease. Neurology. 2022;99(2):e176–86. https://doi.org/10.1212/wnl.0000000000200349. This article supports that the cerebellum and basal ganglia may differentially govern impulsive behaviors with the cerebellum contributing to the brain circuitry of impulsivity in a domain-specific manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lai RY, Desai NA, Amlang CJ, et al. Gambling associated risk-taking decision in cerebellar ataxia. Parkinsonism Relat Disord. 2022;107:105252. https://doi.org/10.1016/j.parkreldis.2022.105252.

    Article  PubMed  PubMed Central  Google Scholar 

  52. • Lin CR, Amokrane N, Chen S, et al. Cerebellar impulsivity-compulsivity assessment scale. Ann Clin Transl Neurol. 2022; https://doi.org/10.1002/acn3.51698. The authors developed a novel rating scale to assess ICBs in cerebellar ataxia and broaden our understanding of the cerebellum-related cognitive and behavioral symptoms.

  53. Rustemeier M, Koch B, Schwarz M, Bellebaum C. Processing of positive and negative feedback in patients with cerebellar lesions. Cerebellum. 2016;15(4):425–38. https://doi.org/10.1007/s12311-015-0702-8.

    Article  PubMed  Google Scholar 

  54. Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014;7(12):5765–71.

    PubMed  PubMed Central  Google Scholar 

  55. Lindsay E, Storey E. Cognitive changes in the spinocerebellar ataxias due to expanded polyglutamine tracts: a survey of the literature. Brain Sci. 2017;7(7) https://doi.org/10.3390/brainsci7070083.

  56. Braga-Neto P, Dutra LA, Pedroso JL, et al. Cognitive deficits in Machado-Joseph disease correlate with hypoperfusion of visual system areas. Cerebellum. 2012a;11(4):1037–44. https://doi.org/10.1007/s12311-012-0354-x.

  57. Braga-Neto P, Pedroso JL, Alessi H, et al. Cerebellar cognitive affective syndrome in Machado Joseph disease: core clinical features. Cerebellum. 2012b;11(2):549–56. https://doi.org/10.1007/s12311-011-0318-6.

  58. Cecchin CR, Pires AP, Rieder CR, et al. Depressive symptoms in Machado-Joseph disease (SCA3) patients and their relatives. Community Genet. 2007;10(1):19–26. https://doi.org/10.1159/000096276.

    Article  CAS  PubMed  Google Scholar 

  59. Fancellu R, Paridi D, Tomasello C, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260(12):3134–43. https://doi.org/10.1007/s00415-013-7138-1.

    Article  PubMed  Google Scholar 

  60. Hengel H, Martus P, Faber J, et al. The frequency of non-motor symptoms in SCA3 and their association with disease severity and lifestyle factors. J Neurol. 2023;270(2):944–52. https://doi.org/10.1007/s00415-022-11441-z.

    Article  CAS  PubMed  Google Scholar 

  61. Klinke I, Minnerop M, Schmitz-Hübsch T, et al. Neuropsychological features of patients with spinocerebellar ataxia (SCA) types 1, 2, 3, and 6. Cerebellum. 2010;9(3):433–42. https://doi.org/10.1007/s12311-010-0183-8.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Lin MT, Yang JS, Chen PP, et al. Bidirectional connections between depression and ataxia severity in spinocerebellar ataxia type 3 patients. Eur Neurol. 2018;79(5-6):266–71. https://doi.org/10.1159/000489398.

    Article  PubMed  Google Scholar 

  63. Lo RY, Figueroa KP, Pulst SM, et al. Depression and clinical progression in spinocerebellar ataxias. Parkinsonism Relat Disord. 2016;22:87–92. https://doi.org/10.1016/j.parkreldis.2015.11.021.

    Article  PubMed  Google Scholar 

  64. Lopes TM, D'Abreu A, França MC Jr, et al. Widespread neuronal damage and cognitive dysfunction in spinocerebellar ataxia type 3. J Neurol. 2013;260(9):2370–9. https://doi.org/10.1007/s00415-013-6998-8.

    Article  CAS  PubMed  Google Scholar 

  65. Moro A, Munhoz RP, Moscovich M, et al. Nonmotor symptoms in patients with spinocerebellar ataxia type 10. Cerebellum. 2017;16(5-6):938–44. https://doi.org/10.1007/s12311-017-0869-2.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pedroso JL, Braga-Neto P, Escorcio-Bezerra ML, et al. Non-motor and extracerebellar features in spinocerebellar ataxia type 2. Cerebellum. 2017;16(1):34–9. https://doi.org/10.1007/s12311-016-0761-5.

    Article  CAS  PubMed  Google Scholar 

  67. Schmitz-Hübsch T, Coudert M. Tezenas du Montcel S, et al. Depression comorbidity in spinocerebellar ataxia. Mov Disord. 2011;26(5):870–6. https://doi.org/10.1002/mds.23698.

    Article  PubMed  Google Scholar 

  68. Lin CC, Ashizawa T, Kuo SH. Collaborative efforts for spinocerebellar ataxia research in the United States: CRC-SCA and READISCA. Front Neurol. 2020;11:902. https://doi.org/10.3389/fneur.2020.00902.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Gan SR, Figueroa KP, Xu HL, et al. The impact of ethnicity on the clinical presentations of spinocerebellar ataxia type 3. Parkinsonism Relat Disord. 2020;72:37–43. https://doi.org/10.1016/j.parkreldis.2020.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Figueroa KP, Gan SR, Perlman S, et al. C9orf72 repeat expansions as genetic modifiers for depression in spinocerebellar ataxias. Mov Disord. 2018;33(3):497–8. https://doi.org/10.1002/mds.27258.

    Article  PubMed  Google Scholar 

  71. Cammack AJ, Atassi N, Hyman T, et al. Prospective natural history study of C9orf72 ALS clinical characteristics and biomarkers. Neurology. 2019;93(17):e1605–17. https://doi.org/10.1212/wnl.0000000000008359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Karamazovova S, Matuskova V, Ismail Z, Vyhnalek M. Neuropsychiatric symptoms in spinocerebellar ataxias and Friedreich ataxia. Neurosci Biobehav Rev. 2023;150:105205. https://doi.org/10.1016/j.neubiorev.2023.105205.

    Article  CAS  PubMed  Google Scholar 

  73. Leroi I, O'Hearn E, Marsh L, et al. Psychopathology in patients with degenerative cerebellar diseases: a comparison to Huntington’s disease. Am J Psychiatry. 2002;159(8):1306–14. https://doi.org/10.1176/appi.ajp.159.8.1306.

    Article  PubMed  Google Scholar 

  74. Friedman JH, Amick MM. Fatigue and daytime somnolence in Machado Joseph Disease (spinocerebellar ataxia type 3). Mov Disord. 2008;23(9):1323–4. https://doi.org/10.1002/mds.22122.

    Article  PubMed  Google Scholar 

  75. Maas R, Schutter D, van de Warrenburg BPC. Discordance between patient-reported outcomes and physician-rated motor symptom severity in early-to-middle-stage spinocerebellar ataxia type 3. Cerebellum. 2021;20(6):887–95. https://doi.org/10.1007/s12311-021-01252-9.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Martinez AR, Nunes MB, Faber I, D'Abreu A, Lopes-Cendes Í, França MC Jr. Fatigue and its associated factors in spinocerebellar ataxia type 3/machado-joseph disease. Cerebellum. 2017;16(1):118–21. https://doi.org/10.1007/s12311-016-0775-z.

    Article  PubMed  Google Scholar 

  77. Yang JS, Xu HL, Chen PP, et al. Ataxic severity is positively correlated with fatigue in spinocerebellar ataxia type 3 patients. Front Neurol. 2020;11:266. https://doi.org/10.3389/fneur.2020.00266.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yuan X, Ou R, Hou Y, et al. Extra-cerebellar signs and non-motor features in chinese patients with spinocerebellar ataxia type 3. Front Neurol. 2019;10:110. https://doi.org/10.3389/fneur.2019.00110.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Martins CR Jr, Martinez AR, D'Abreu A, Lopes-Cendes I, França MC Jr. Fatigue is frequent and severe in spinocerebellar ataxia type 1. Parkinsonism Relat Disord. 2015;21(7):821–2. https://doi.org/10.1016/j.parkreldis.2015.04.015.

    Article  PubMed  Google Scholar 

  80. Pedroso JL, Braga-Neto P, Felício AC, et al. Sleep disorders in cerebellar ataxias. Arq Neuropsiquiatr. 2011;69(2a):253–7. https://doi.org/10.1590/s0004-282x2011000200021.

    Article  PubMed  Google Scholar 

  81. Abele M, Bürk K, Laccone F, Dichgans J, Klockgether T. Restless legs syndrome in spinocerebellar ataxia types 1, 2, and 3. J Neurol. 2001;248(4):311–4. https://doi.org/10.1007/s004150170206.

    Article  CAS  PubMed  Google Scholar 

  82. Schöls L, Haan J, Riess O, Amoiridis G, Przuntek H. Sleep disturbance in spinocerebellar ataxias: is the SCA3 mutation a cause of restless legs syndrome? Neurology. 1998;51(6):1603–7. https://doi.org/10.1212/wnl.51.6.1603.

    Article  PubMed  Google Scholar 

  83. Gitaí LLG, Éckeli AL, Sobreira-Neto MA, et al. Which factors in spinocerebellar ataxia type 3 patients are associated with restless legs syndrome/Willis-Ekbom disease? Cerebellum. 2021;20(1):21–30. https://doi.org/10.1007/s12311-020-01170-2.

    Article  PubMed  Google Scholar 

  84. Tuin I, Voss U, Kang JS, et al. Stages of sleep pathology in spinocerebellar ataxia type 2 (SCA2). Neurology. 2006;67(11):1966–72. https://doi.org/10.1212/01.wnl.0000247054.90322.14.

    Article  CAS  PubMed  Google Scholar 

  85. Chi NF, Shiao GM, Ku HL, Soong BW. Sleep disruption in spinocerebellar ataxia type 3: a genetic and polysomnographic study. J Chin Med Assoc. 2013;76(1):25–30. https://doi.org/10.1016/j.jcma.2012.09.006.

    Article  PubMed  Google Scholar 

  86. Folha Santos FA, de Carvalho LBC, Prado LFD. do Prado GF, Barsottini OG, Pedroso JL. Sleep apnea in Machado-Joseph disease: a clinical and polysomnographic evaluation. Sleep Med. 2018;48:23–6. https://doi.org/10.1016/j.sleep.2018.04.002.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Kuo received funding from the National Institutes of Health (NIH: R01NS118179, R01NS104423, R0NS1124854, R25NS070697) and the National Ataxia Foundation. Dr. Opal received funding from the NIH (R01NS082351, R01NS127204, R61NS127141, and U01NS104326) and the Giddan Foundation and the National Ataxia Foundation. Dr. Lin received funding from Baylor College of Medicine Junior Faculty Seed Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Puneet Opal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, CY.R., Kuo, SH. & Opal, P. Cognitive, Emotional, and Other Non-motor Symptoms of Spinocerebellar Ataxias. Curr Neurol Neurosci Rep 24, 47–54 (2024). https://doi.org/10.1007/s11910-024-01331-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-024-01331-4

Keywords

Navigation