Skip to main content
Log in

Strain-promoted S-arylation and alkenylation of sulfinamides using arynes and cyclic alkynes

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

The conversion of commercially available chiral sulfinamides into pharmaceutically useful chiral sulfoximines via direct SIV-functionalization is synthetically attractive but challenging due to the competitive reaction of N-functionalization. Herein, we disclose a novel strain-release strategy to access stereospecific and chemoselective SIV-arylation and alkenylation of sulfinamides using arynes and strained cyclic alkynes. This method tolerates an unprecedented chemical diversity of functional groups attached to the nitrogen center (N–R). The origin of the high SIV-selectivity is elucidated by density functional theory calculations, suggesting a stepwise mechanism for the aryne substrates and a concerted mechanism for the cyclic alkynes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Reggelin M, Zur C. Synthesis, 2000, 2000: 1–64

    Article  Google Scholar 

  2. Wiezorek S, Lamers P, Bolm C. Chem Soc Rev, 2019, 48: 5408–5423

    Article  CAS  PubMed  Google Scholar 

  3. Bentley R. Chem Soc Rev, 2005, 34: 609–624

    Article  CAS  PubMed  Google Scholar 

  4. Lücking U. Angew Chem Int Ed, 2013, 52: 9399–9408

    Article  Google Scholar 

  5. Frings M, Bolm C, Blum A, Gnamm C. Eur J Med Chem, 2017, 126: 225–245

    Article  CAS  PubMed  Google Scholar 

  6. Mäder P, Kattner L. J Med Chem, 2020, 63: 14243–14275

    Article  PubMed  Google Scholar 

  7. Han Y, Xing K, Zhang J, Tong T, Shi Y, Cao H, Yu H, Zhang Y, Liu D, Zhao L. Eur J Med Chem, 2021, 209: 112885

    Article  CAS  PubMed  Google Scholar 

  8. Loso MR, Nugent BM, Huang JX, Rogers RB, Zhu Y, Renga JM, Hegde VB, Demark J. Preparation of insecticidal W-substituted (6-haloalkylpyridin-3-yl) alkyl sulfoximines. WO Patent 2007095229, 2007

  9. Johnson CR. Acc Chem Res, 1973, 6: 341–347

    Article  CAS  Google Scholar 

  10. Okamura H, Bolm C. Chem Lett, 2004, 33: 482–487

    Article  CAS  Google Scholar 

  11. Bizet V, Kowalczyk R, Bolm C. Chem Soc Rev, 2014, 43: 2426–2438

    Article  CAS  PubMed  Google Scholar 

  12. Shen X, Hu J. Eur J Org Chem, 2014, 2014: 4437–4451

    Article  CAS  Google Scholar 

  13. Dong S, Frings M, Cheng H, Wen J, Zhang D, Raabe G, Bolm C. J Am Chem Soc, 2016, 138: 2166–2169

    Article  CAS  PubMed  Google Scholar 

  14. Brauns M, Cramer N. Angew Chem Int Ed, 2019, 58: 8902–8906

    Article  CAS  Google Scholar 

  15. Wang J, Frings M, Bolm C. Angew Chem Int Ed, 2013, 52: 8661–8665

    Article  CAS  Google Scholar 

  16. Lebel H, Piras H, Bartholoméüs J. Angew Chem Int Ed, 2014, 53: 7300–7304

    Article  CAS  Google Scholar 

  17. Collet F, Dodd RH, Dauban P. Org Lett, 2008, 10: 5473–5476

    Article  CAS  PubMed  Google Scholar 

  18. Bizet V, Hendriks CMM, Bolm C. Chem Soc Rev, 2015, 44: 3378–3390

    Article  CAS  PubMed  Google Scholar 

  19. Graham MA, Askey H, Campbell AD, Chan L, Cooper KG, Cui Z, Dalgleish A, Dave D, Ensor G, Galan Espinosa MR, Hamilton P, Heffernan C, Jackson LV, Jing D, Jones MF, Liu P, Mulholland KR, Pervez M, Popadynec M, Randles E, Tomasi S, Wang S. Org Process Res Dev, 2021, 25: 43–56

    Article  CAS  Google Scholar 

  20. Zenzola M, Doran R, Degennaro L, Luisi R, Bull JA. Angew Chem Int Ed, 2016, 55: 7203–7207

    Article  CAS  Google Scholar 

  21. Bolm C, Pandey A, McGrath M, Mancheno OG. Synthesis, 2011: 3827–3838

  22. Sun Y, Cramer N. Angew Chem Int Ed, 2018, 57: 15539–15543

    Article  CAS  Google Scholar 

  23. Shen B, Wan B, Li X. Angew Chem Int Ed, 2018, 57: 15534–15538

    Article  CAS  Google Scholar 

  24. Zhou T, Qian PF, Li JY, Zhou YB, Li HC, Chen HY, Shi BF. JAm Chem Soc, 2021, 143: 6810–6816

    Article  CAS  Google Scholar 

  25. Fang S, Liu Z, Zhang H, Pan J, Chen Y, Ren X, Wang T. ACS Catal, 2021, 11: 13902–13912

    Article  CAS  Google Scholar 

  26. Tang Y, Miller SJ. J Am Chem Soc, 2021, 143: 9230–9235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Robak MAT, Herbage MA, Ellman JA. Chem Rev, 2010, 110: 3600–3740

    Article  CAS  PubMed  Google Scholar 

  28. Prakash A, Dibakar M, Selvakumar K, Ruckmani K, Sivakumar M. Tetrahedron Lett, 2011, 52: 5625–5628

    Article  CAS  Google Scholar 

  29. Sun X, Tu X, Dai C, Zhang X, Zhang B, Zeng Q. J Org Chem, 2012, 77: 4454–4459

    Article  CAS  Google Scholar 

  30. Liu Y, Wang Z, Guo B, Cai Q. Tetrahedron Lett, 2016, 57: 2379–2381

    Article  CAS  Google Scholar 

  31. Zhang R, Sun M, Yan Q, Lin X, Li X, Fang X, Sung HHY, Williams ID, Sun J. Org Lett, 2022, 24: 2359–2364

    Article  CAS  PubMed  Google Scholar 

  32. Jonsson EU, Bacon CC, Johnson CR. J Am Chem Soc, 1971, 93: 5306–5308

    Article  CAS  Google Scholar 

  33. Johnson CR, Bis KG, Cantillo JH, Meanwell NA, Reinhard MFD, Zeller JR, Vonk GP. J Org Chem, 1983, 48: 1–3

    Article  CAS  Google Scholar 

  34. Reggelin M. Tetrahedron Lett, 1995, 36: 5885–5886

    Article  CAS  Google Scholar 

  35. Leca D, Fensterbank L, Lacôte E, Malacria M. Org Lett, 2002, 4: 4093–4095

    Article  CAS  PubMed  Google Scholar 

  36. Matos PM, Lewis W, Moore JC, Stockman RA. Org Lett, 2018, 20: 3674–3677

    Article  CAS  PubMed  Google Scholar 

  37. Greed S, Symes O, Bull JA. Chem Commun, 2022, 58: 5387–5390

    Article  CAS  Google Scholar 

  38. Yang G, Yuan Y, Tian Y, Zhang S, Cui X, Xia B, Li G, Tang Z. J Am Chem Soc, 2023, 145: 5439–5446

    Article  CAS  PubMed  Google Scholar 

  39. Aota Y, Maeda Y, Kano T, Maruoka K. Chem Eur J, 2019, 25: 15755–15758

    Article  CAS  PubMed  Google Scholar 

  40. Cividino P, Verrier C, Philouze C, Carret S, Poisson J-. Adv Synth Catal, 2019, 361: 1236–1240

    Article  CAS  Google Scholar 

  41. Jersovs G, Bojars M, Donets PA, Suna E. Org Lett, 2022, 24: 4625–4629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ye W, Zhang L, Ni C, Rong J, Hu J. Chem Commun, 2014, 50: 10596–10599

    Article  CAS  Google Scholar 

  43. Aota Y, Kano T, Maruoka K. Angew Chem Int Ed, 2019, 58: 17661–17665

    Article  CAS  Google Scholar 

  44. Aota Y, Kano T, Maruoka K. J Am Chem Soc, 2019, 141: 19263–19268

    Article  CAS  PubMed  Google Scholar 

  45. Zou X, Wang H, Gao B. Org Lett, 2023, 25: 7656–7660

    Article  CAS  PubMed  Google Scholar 

  46. Zou X, Shen B, Li G, Liang Q, Ouyang Y, Yang B, Yu P, Gao B. Chemrxiv, 2023, doi: https://doi.org/10.26434/chemrxiv-2023-t0d4n

  47. Li S, Wu P, Moses JE, Sharpless KB. Angew Chem Int Ed, 2017, 56: 2903–2908

    Article  CAS  Google Scholar 

  48. Zhang ZX, Willis MC. Chem, 2022, 8: 1137–1146

    Article  CAS  Google Scholar 

  49. Gao B, Li S, Wu P, Moses JE, Sharpless KB. Angew Chem Int Ed, 2018, 57: 1939–1943

    Article  CAS  Google Scholar 

  50. Zeng D, Ma Y, Deng WP, Wang M, Jiang X. Angew Chem Int Ed, 2022, 61: e202207100

    Article  CAS  ADS  Google Scholar 

  51. Zeng D, Deng WP, Jiang X. Natl Sci Rev, 2023, 10: nwad123

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Wenk HH, Winkler M, Sander W. Angew Chem Int Ed, 2003, 42: 502–528

    Article  CAS  Google Scholar 

  53. Gampe CM, Carreira EM. Angew Chem Int Ed, 2012, 51: 3766–3778

    Article  CAS  Google Scholar 

  54. Tadross PM, Stoltz BM. Chem Rev, 2012, 112: 3550–3577

    Article  CAS  PubMed  Google Scholar 

  55. Shi J, Li L, Li Y. Chem Rev, 2021, 121: 3892–4044

    Article  CAS  PubMed  Google Scholar 

  56. Anthony SM, Wonilowicz LG, McVeigh MS, Garg NK. JACSAu, 2021, 1: 897–912

    CAS  Google Scholar 

  57. Roberts JD, Simmons Jr. HE, Carlsmith LA, Vaughan CW. J Am Chem Soc, 1953, 75: 3290–3291

    Article  CAS  Google Scholar 

  58. Wittig G. Angew Chem, 1954, 66: 10–17

    Article  CAS  ADS  Google Scholar 

  59. Huisgen R, Knorr R. Tetrahedron Lett, 1963, 4: 1017–1021

    Article  Google Scholar 

  60. Himeshima Y, Sonoda T, Kobayashi H. Chem Lett, 1983, 12: 1211–1214

    Article  Google Scholar 

  61. Medina JM, Mackey JL, Garg NK, Houk KN. J Am Chem Soc, 2014, 136: 15798–15805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Bronner SM, Mackey JL, Houk KN, Garg NK. J Am Chem Soc, 2012, 134: 13966–13969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Scardiglia F, Roberts JD. Tetrahedron, 1957, 1: 343–344

    Article  CAS  Google Scholar 

  64. Agard NJ, Prescher JA, Bertozzi CR. J Am Chem Soc, 2004, 126: 15046–15047

    Article  CAS  PubMed  Google Scholar 

  65. Zeng D, Ma Y, Deng WP, Wang M, Jiang X. Nat Synth, 2022, 1: 455–463

    Article  ADS  Google Scholar 

  66. Craven GB, Briggs EL, Zammit CM, McDermott A, Greed S, Affron DP, Leinfellner C, Cudmore HR, Tweedy RR, Luisi R, Bull JA, Armstrong A. J Org Chem, 2021, 86: 7403–7424

    Article  CAS  PubMed  Google Scholar 

  67. McMahon TC, Medina JM, Yang YF, Simmons BJ, Houk KN, Garg NK. J Am Chem Soc, 2015, 137: 4082–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Liu Z, Larock RC. J Am Chem Soc, 2005, 127: 13112–13113

    Article  CAS  PubMed  Google Scholar 

  69. Liang Q, Wells LA, Han K, Chen S, Kozlowski MC, Jia T. J Am Chem Soc, 2023, 145: 6310–6318

    Article  CAS  PubMed  Google Scholar 

  70. Wu X, Chen M, He FS, Wu J. Org Lett, 2023, 25: 5157–5161

    Article  CAS  PubMed  Google Scholar 

  71. Zhou YB, Zhou T, Qian PF, Li JY, Shi BF. ACS Catal, 2022, 12: 9806–9811

    Article  CAS  Google Scholar 

  72. Cheng Y, Dong W, Wang H, Bolm C. Chem Eur J, 2016, 22: 10821–10824

    Article  CAS  PubMed  Google Scholar 

  73. Buckheit Jr. RW, Fliakas-Boltz V, Decker WD, Roberson JL, Pyle CA, White EL, Bowdon BJ, McMahon JB, Boyd MR, Bader JP, Nickell DG, Barth H, Antonucci TK. Antiviral Res, 1994, 25: 43–56

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22001065), the Science and Technology Foundation of Hunan Province (2021JJ30090), Guangdong Provincial Key Laboratory of Catalysis (2020B121201002), and Shenzhen Science and Technology Program (KQTD20210811090112004). Computational work was supported by Center for Computational Science and Engineering at SUSTech, and the CHEM high-performance supercomputer cluster (CHEM-HPC) located at the Department of Chemistry, SUSTech.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peiyuan Yu or Bing Gao.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Additional information

Supporting information The supporting information is available online at http://chem.scichina.com and http://link.springer.com/journal/11426. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, X., Shen, B., Li, Gl. et al. Strain-promoted S-arylation and alkenylation of sulfinamides using arynes and cyclic alkynes. Sci. China Chem. 67, 928–935 (2024). https://doi.org/10.1007/s11426-023-1842-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-023-1842-8

Navigation