Skip to main content
Log in

On the Correlation of Cosmic-Ray Intensity with Solar Activity and Interplanetary Parameters

  • Research
  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

We investigated correlations between cosmic-ray intensity and 14 solar and interplanetary parameters, which were classified into four cases. We used the modulation of cosmic-ray intensity observed at six distinct stations with different latitudes and cut-off rigidities. We used the partial least-squares (PLS) method to rank the parameters. In the first case, we employed 11 parameters without considering halo-type coronal mass ejections (CMEs) and solar proton events (SPEs). In addition, we considered energetic phenomena associated with halo CMEs for the second case and SPEs in the third case. In the fourth case, we combined all of the parameters. The results based on the magnitude of the first principal component show that the sunspot number (SN), interplanetary magnetic field (IMF), heliospheric current sheet (HCS), and plasma velocity are the parameters with the strongest influence on the modulation of the cosmic-ray intensity at all six stations and in the first case we considered. For a halo-type CME (second case), SN, IMF, HCS, CME speed, and proton density were identified as the most significant parameters, which is identical to the results obtained in the fourth case. During an SPE (third case), the most significant parameters were SN, IMF, HCS, SPEs, and plasma velocity. The INVK and OULU stations, with nearly the same latitude and altitude, exhibit similar results. Our analysis of the results from the low-latitude stations (PSNM and TSMB) yielded different results from the other three stations at higher latitude. For the PSNM and TSMB stations, \(B_{y}\), \(B_{x}\), and the cone angle are the parameters that most strongly influence the modulation of the cosmic-ray intensity. This occurs because the influence of these parameters on cosmic-ray modulation depends on the latitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

References

  • Ahluwalia, H.S.: 2002, IMF intensity and galactic cosmic ray modulation. Adv. Space Res. 29, 439. DOI.

    Article  ADS  Google Scholar 

  • Ahluwalia, H.S.: 2003, Solar wind modulation of galactic cosmic rays. Geophys. Res. Lett. 30, 1133. DOI.

    Article  ADS  Google Scholar 

  • Ahluwalia, H.S.: 2011, Timelines of cosmic ray intensity, Ap, IMF, and sunspot numbers since 1937. J. Geophys. Res. 116, A12. DOI.

    Article  Google Scholar 

  • Ahluwalia, H.S.: 2014, Sunspot activity and cosmic ray modulation at 1 a.u. for 1900-2013. Adv. Space Res. 54, 1704. DOI.

    Article  ADS  Google Scholar 

  • Aslam, O.P.M., Badruddin: 2012, Solar modulation of cosmic rays during the declining and mínimum phases of solar cycle 23 comparison with past three solar cycles. Solar Phys. 279, 269. DOI.

    Article  ADS  Google Scholar 

  • Aslam, O.P.M., Badruddin: 2015, Study of cosmic-ray modulation during recent unusual mínimum and mini-maximum of solar cycle 24. Solar Phys. 290, 2333. DOI.

    Article  ADS  Google Scholar 

  • Badruddin, S.M., Singh, Y.P.: 2007, Modulation loops, time lag and relationship between cosmic ray intensity and tilt of the heliospheric current sheet. Astron. Astro. Phys. 466, 697. DOI.

    Article  ADS  Google Scholar 

  • Bertucci, B., Fiandrini, E., Khiali, B., Tomassetti, N.: 2019, Time lag in cosmic-ray modulation and global properties of the solar cycle. Proc. Sci. 358, 1162. DOI.

    Article  Google Scholar 

  • Butler, B.J., Campbell, D.B., de Pater, I., Gary, D.E.: 2004, Solar system science with SKA. New Astron. Rev. 48, 1511. DOI.

    Article  ADS  Google Scholar 

  • Cane, H.V., Wibberenz, G., Richardson, I.G., von Rosenvinge, T.T.: 1999, Cosmic ray modulation and the solar magnetic field. Geophys. Res. Lett. 26, 565. DOI.

    Article  ADS  Google Scholar 

  • Chibber, R., Subedi, P., Usmanov, A.V., Matthaeus, W.H., Ruffolo, D., Goldstein, M.L., Parashar, T.N.: 2017, Cosmic-ray diffusion coefficients throughout the inner heliosphere from global solar wind simulation. Astrophys. J. Suppl. 230, 21. DOI.

    Article  ADS  Google Scholar 

  • Cliver, E.W., Ling, A.G.: 2001, 22 year patterns in the relationship of sunspot number and tilt angle to cosmic-ray intensity. Astrophys. J. 551, L189. DOI.

    Article  ADS  Google Scholar 

  • Danilova, O.A., Demina, I.M., Ptitsyna, N.G., Tyasto, M.I.: 2019, Mapping of geomagnetic cut-off rigidity of cosmic rays during the main phase of the magnetic storm of November 20, 2003. Geomagn. Aeron. 59, 147. DOI.

    Article  ADS  Google Scholar 

  • Davis, L. Jr.: 1955, Interplanetary magnetic fields and cosmic rays. Phys. Rev. 100, 1440. DOI.

    Article  ADS  Google Scholar 

  • Dorman, L.I.: 2021, Space weather and cosmic ray effects. In: Letcher, T.M. (ed.) Climate Change, Elsevier, Amsterdam, 711. DOI.

    Chapter  Google Scholar 

  • Dumbović, M., Vršnak, B., Čalogović, J., Župan, R.: 2011, Cosmic ray modulation by solar wind disturbances. Astron. Astro. Phys. 531, A91. DOI.

    Article  Google Scholar 

  • Dunai, T.J.: 2010, Cosmic Rays in Cosmogenic Nuclides: Principles, Concepts and Applications in the Earth Surface Sciences, Cambridge University Press, Cambridge UK.

    Book  Google Scholar 

  • El Borie, M.A., Hamdy, A.: 2018, A correlative study between heliospheric current sheet tilts, cosmic ray intensities and solar activity parameters. Arab J. Nucl. Sci. Appl. 51, 152.

    Google Scholar 

  • Forbush, S.E.: 1958, Cosmic-ray intensity variations during two solar cycles. J. Geophys. Res. 63, 651. DOI.

    Article  ADS  Google Scholar 

  • Fu, S., Zhang, X., Zhao, L., Li, Y.: 2021, Variations of galactic cosmic rays in the recent solar cycles. Astron. J. Suppl. Ser. 254, 37. DOI.

    Article  ADS  Google Scholar 

  • Grieder, P.K.F.: 2001, Heliospheric phenomena. In: Grieder, P.K.F. (ed.) Cosmic Rays at Earth, Elsevier, Amsterdam, 893. DOI.

    Chapter  Google Scholar 

  • Hedgecock, P.C.: 1975, Measurements of IMF in relation to the modulation of cosmic rays. Solar Phys. 42, 497. DOI.

    Article  ADS  Google Scholar 

  • Herdiwijaya, D.: 2019, Distribution of solar energetic particles and magnetic field orientations related to strong geomagnetic storms in solar cycle 24. J. Phys. Conf. Ser. 1204, 012121. DOI.

    Article  Google Scholar 

  • Huybrighs, V.H.L.F.: 2018, A search for signatures of Europa’s atmosphere and plumes in Galileo charged particle data. DOI.

  • Inceoglu, F., Knudsen, M.F., Karoff, C., Olsen, J.: 2014, Modeling the relationship between neutron counting rates and Solarspot numbers using the hysteresis effect. Solar Phys. 289, 1387. DOI.

    Article  ADS  Google Scholar 

  • James, M.K., Imber, S.M., Bunce, E.J., Yeoman, T.K., Lockwood, M., Owens, M.J., Slavin, J.A.: 2017, Interplanetary magnetic field properties and variability near Mercury’s orbit. J. Geophys. Res. Space Phys. 122, 7907. DOI.

    Article  ADS  Google Scholar 

  • Kane, R.P.: 2011, Hysteresis of cosmic rays with respect to sunspot numbers during the recent sunspot minimum. Solar Phys. 269, 451. DOI.

    Article  ADS  Google Scholar 

  • Kilpua, E., Koskinen, H.E.J., Pulkkinen, T.I.: 2017, Coronal mass ejection and their sheath regions in interplanetary space. Liv. Rev. Solar Phys. 14, 5. DOI.

    Article  ADS  Google Scholar 

  • Koldobskiy, S.A., Kähkönen, R., Hofer, B., Krivova, N.A., Kovaltsov, G.A., Usoskin, I.G.: 2022, Time lag between cosmic-ray and solar variability: sunspot numbers and open solar magnetic flux. Solar Phys. 297, 38. DOI.

    Article  ADS  Google Scholar 

  • Kuznetsov, S.N., Yushkov, B.Y., Denisov, Y.I., Kudela, K., Myagkova, I.N.: 2007, Dynamics of the boundary of the penetration of solar energetic particles to Earth’s magnetosphere according to CORONAS-F data. Solar Syst. Res. 41, 348. DOI.

    Article  ADS  Google Scholar 

  • Mangeard, P.S., Clem, J., Evenson, P., Pyle, R., Mitthumsiri, W., Ruffolo, D., Sàiz, A., Nutaro, T.: 2018, Distinct pattern of solar modulation of galactic cosmic rays above a high geomagnetic cuttoff rigidity. Astrophys. J. 858, 43. DOI.

    Article  ADS  Google Scholar 

  • Mavromichalaki, H., Paschalis, P., Gerontidou, M., Papailiou, M.C., Paouris, E., Tezari, A., Lingri, D., Livada, M., Stassinakis, A.N., Crosby, N., Dierckxsens, M.: 2022, The updated version of the A.Ne.Mo.S. GLE alert system: the case of the Ground-Level Enhancement GLE73 on 28 October 2021. Universe 8, 378. DOI.

    Article  ADS  Google Scholar 

  • Miroshnichenko, L.I.: 2014, Solar Cosmic Rays: Fundamental and Applications, 2nd edn. Springer, Heidelberg.

    Google Scholar 

  • Morrison, P.: 1956, Solar origin of cosmic-ray time variations. Phys. Rev. 101, 1397. DOI.

    Article  ADS  Google Scholar 

  • Nymmik, R.A., Panasyuk, M.I., Petrukhin, V.V., Yushkov, B.Y.: 2009, A method of calculation of vertical cutoff rigidity in the geomagnetic field. Cosm. Res. 47, 191. DOI.

    Article  ADS  Google Scholar 

  • Panasyuk, M.I., Kalegaev, V., Miroshnichenko, M., Kuznetsov, N.V., Nymmik, R., Popova, H., Yushkov, B., Benghin, B.: 2018, Near-Earth radiation environment for extreme solar and geomagnetic conditions. In: Buzulukova, N. (ed.) Extreme Events in Geospace, Elsevier, Amsterdam, 349. DOI.

    Chapter  Google Scholar 

  • Ross, E., Chaplin, W.J.: 2019, The behaviour of galactic cosmic-ray intensity during solar activity cycle 24. Solar Phys. 294, 8. DOI.

    Article  ADS  Google Scholar 

  • Strauss, R.D., Potgieter, M.S., Büsching, I., Kopp, A.: 2012, Modelling heliospheric current sheet drift in stochastic cosmic ray transport models. Astrophys. Space Sci. 339, 223. DOI.

    Article  ADS  Google Scholar 

  • Syed Ibrahim, M., Shanmugaraju, A., Moon, Y.J., Vrsnak, B., Umapathy, S.: 2018, Properties and relationship between solar eruptive flares and coronal mass ejections during rising phase of solar cycles 23 and 24. Adv. Space Res. 61, 540. DOI.

    Article  ADS  Google Scholar 

  • Synder, C.W., Neugebauer, M., Rao, U.R.: 1963, The solar wind velocity and its correlation with cosmic-ray variations and with solar and geomagnetic activity. J. Geophys. Res. 68, 6361. DOI.

    Article  ADS  Google Scholar 

  • Tezari, A., Paschalis, P., Gerontidou, M., Mavromichalaki, H., Karaiskos, P.: 2019, Radiation exposure of aircrews due to space radiation. Hellenic Nucl. Phys. Soc. Adv. Nucl. Phys. 26, 210. DOI.

    Article  Google Scholar 

  • Thomas, S.R., Owens, M.J., Lockwood, M., Scott, C.J.: 2014, Galactic cosmic ray modulation near the heliospheric current sheet. Solar Phys. 289, 2653. DOI.

    Article  ADS  Google Scholar 

  • Tjus, J.B., Desiati, P., Döpper, N., Fichtner, H., Kleimann, J., Kroll, M., Tenholt, F.: 2020, Cosmic-ray propagation around the sun: investigating the influence of the solar magnetic field on the cosmic-ray sun shadow. Astron. Astro. Phys. 633, A83. DOI.

    Article  Google Scholar 

  • Usoskin, I.G., Kananen, H., Mursula, K., Tanskanen, P., Kovaltsov, G.A.: 1998, Correlative study of solar activity and cosmic ray intensity. J. Geophys. Res. 103, 9567. DOI.

    Article  ADS  Google Scholar 

  • Van Allen, J.A.: 2000, On the modulation of galactic cosmic ray intensity during solar activity cycles 19, 20, 21, 22, and early 23. Geophys. Res. Lett. 27, 2453. DOI.

    Article  ADS  Google Scholar 

  • Wold, H.: 1996, Estimation of principal components and related models by iterative least squares. In: Krishnaiaah, P.R. (ed.) Multivariate Analysis, Academic Press, New York, 391.

    Google Scholar 

  • Wold, S., Sjöström, M., Eriksson, L.: 2001, PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. Syst. 58, 109. DOI.

    Article  Google Scholar 

  • Zhang, J.N., Luo, A.L., Zhao, Y.H.: 2009, Automated estimation of stellar fundamental parameters from low resolution spectra: the PLS method. Res. Astron. Astrophys. 9, 712. DOI.

    Article  ADS  Google Scholar 

Download references

Acknowledgments

A.N.I. Putri would like to thank the Organization and Governance of the Indonesia Endowment Funds for Education (LPDP) for supporting this research by a doctoral education scholarship.

Author information

Authors and Affiliations

Authors

Contributions

D. Herdiwijaya wrote the concept and design of the research; A.N.I. Putri wrote the draf manuscript text; A.N.I. Putri and D. Herdiwijaya revised the main manuscript; All authors contributed to data analysis and interpretation. All authors reviewed the manuscript and results. All authors gave final approval of the version to be published.

Corresponding author

Correspondence to Dhani Herdiwijaya.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Putri, A.N.I., Herdiwijaya, D. & Hidayat, T. On the Correlation of Cosmic-Ray Intensity with Solar Activity and Interplanetary Parameters. Sol Phys 299, 12 (2024). https://doi.org/10.1007/s11207-023-02249-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-023-02249-9

Keywords

Navigation