Skip to main content
Log in

On Thermo-Optically Excited Parametric Oscillations of Microbeam Resonators. II

  • ON THE ANNIVERSARY OF ALEXANDER KONSTANTINOVICH BELYAEV
  • Published:
Vestnik St. Petersburg University, Mathematics Aims and scope Submit manuscript

Abstract

The present article is the second part of our study of the nonlinear dynamics of parametrically excited bending vibrations of a microbeam fixed at both ends, a basic sensitive element of a promising class of microsensors of various physical quantities, under laser thermo-optical action in the form of periodically generated pulses acting on a certain part of the surface of the beam element. The conceptual technical feasibility of laser generation of parametric oscillations of high-Q microresonators without implementation of scenarios with the loss of elastic stability of the sensitive element or unacceptable heating is shown. The nature of the zone of the primary parametric resonance is analyzed analytically. The resonant characteristics of the system are constructed in a geometrically non-linear formulation corresponding to the Bernoulli–Euler beam model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

REFERENCES

  1. R. I. Vorobyev, I. V. Sergeichev, A. A. Karabutov, E. A. Mironova, E. V. Savateeva, and I. Sh. Akhatov, “Application of the optoacoustic method to assess the effect of voids on the crack resistance of structural carbon plastics,” Acoust. Phys. 66, 132–136 (2020). https://doi.org/10.1134/S1063771020020153

    Article  Google Scholar 

  2. G. Yan, S. Raetz, N. Chigarev, Ja. Blondeau, V. E. Gusev, and V. Tournat, “Cumulative fatigue damage in thin aluminum films evaluated non-destructively with lasers via zero-group-velocity Lamb modes,” NDT E Int. 116, 102323 (2020). https://doi.org/10.1016/j.ndteint.2020.102323

    Article  Google Scholar 

  3. Yu. Pan, C. Rossignol, and B. Audoin, “Acoustic waves generated by a laser line pulse in cylinders; Application to the elastic constants measurement,” J. Acoust. Soc. Am. 115, 1537–1545 (2004). https://doi.org/10.1121/1.1651191

    Article  Google Scholar 

  4. G. Chow, E. Uchaker, G. Cao, and Ju. Wang, “Laser-induced surface acoustic waves: An alternative method to nanoindentation for the mechanical characterization of porous nanostructured thin film electrode media,” Mech. Mater. 91, 333–342 (2015). https://doi.org/10.1016/J.MECHMAT.2015.10.005

    Article  Google Scholar 

  5. A. Champion and Y. Bellouard, “Direct volume variation measurements in fused silica specimens exposed to femtosecond laser,” Opt. Mater. Express 2, 789–798 (2012). https://doi.org/10.1364/OME.2.000789

    Article  Google Scholar 

  6. P. H. Otsuka, S. Mezil, O. Matsuda, M. Tomoda, A. A. Maznev, T. Gan, N. Fang, N. Boechler, V. E. Gusev, and O. B. Wright, “Time-domain imaging of gigahertz surface waves on an acoustic metamaterial,” New J. Phys. 20, 013026 (2018). https://doi.org/10.1088/1367-2630/AA9298

    Article  Google Scholar 

  7. C. Li, G. Guan, F. Zhang, G. Nabi, R. K. Wang, and Z. Huang, “Laser induced surface acoustic wave combined with phase sensitive optical coherence tomography for superficial tissue characterization: A solution for practical application,” Biomed. Opt. Express 5, 1403–1418 (2014). https://doi.org/10.1364/BOE.5.001403

    Article  Google Scholar 

  8. L. M. Phinney, K. A. Klody, Jo. T. Sackos, and Je. A. Walraven, “Damage of MEMS thermal actuators heated by laser irradiation,” in Reliability, Packaging, Testing and Characterization of MEMS/MOEMS IV: Proc. MOEMS-MEMS Micro and Nanofabrication, San Jose, Calif., 2005; Proc. SPIE 5716, 81–88 (2005). https://doi.org/10.1117/12.594408

    Article  Google Scholar 

  9. J. R. Serrano and L. M. Phinney, “Displacement and thermal performance of laser-heated asymmetric MEMS actuators,” J. Microelectromech. Syst. 17, 166–174 (2008). https://doi.org/10.1109/JMEMS.2007.911945

    Article  Google Scholar 

  10. A. Mai, C. Bunce, R. Hübner, D. Pahner, and U. A. Dauderstädt, “In situ bow change of Al-alloy MEMS micromirrors during 248-nm laser irradiation,” J. Micro/Nanolithogr., MEMS MOEMS 15, 035502 (2016). https://doi.org/10.1117/1.JMM.15.3.035502

    Article  Google Scholar 

  11. J. D. Zook, D. W. Burns, W. R. Herb, H. Guckel, J. W. Kang, and Y. Ahn, “Optically excited self-resonant microbeams,” Sens. Actuators, A 52, 92–98 (1996). https://doi.org/10.1016/0924-4247(96)80131-2

    Article  Google Scholar 

  12. T. Yang and Y. Bellouard, “Laser-induced transition between nonlinear and linear resonant behaviors of a micromechanical oscillator,” Phys. Rev. Appl. 7, 064002 (2017). https://doi.org/10.1103/PhysRevApplied.7.064002

    Article  Google Scholar 

  13. R. J. Dolleman, S. Houri, A. Chandrashekar, F. Alijani, H. S. J. van der Zant, and P. G. Steeneken, “Opto-thermally excited multimode parametric resonance in graphene membranes,” Sci. Rep. 8, 9366 (2018). https://doi.org/10.1038/s41598-018-27561-4

    Article  Google Scholar 

  14. A. T. Zehnder, R. H. Rand, and S. Krylov, “Locking of electrostatically coupled thermo-optically driven MEMS limit cycle oscillators,” Int. J. Non-Linear Mech. 102, 92–100 (2018). https://doi.org/10.1016/J.IJNONLINMEC.2018.03.009

    Article  Google Scholar 

  15. A. Bhaskar, B. Shayak, R. H. Rand, and A. T. Zehnder, “Synchronization characteristics of an array of coupled MEMS limit cycle oscillators,” Int. J. Non-Linear Mech. 128, 103634 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103634

    Article  Google Scholar 

  16. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, O. V. Privalova, and L. V. Shtukin, “Stability of the Bernoulli–Euler beam in coupled electric and thermal fields,” Dokl. Phys. 63, 342–347 (2018). https://doi.org/10.1134/S1028335818080086

    Article  Google Scholar 

  17. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, O. V. Privalova, B. N. Semenov, and L. V. Shtukin, “Bernoulli–Euler beam under action of a moving thermal source: characteristics of the dynamic behavior,” Dokl. Phys. 64, 185–188 (2019). https://doi.org/10.1134/S1028335819040050

    Article  Google Scholar 

  18. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, O. V. Privalova, and L. V. Shtukin, “Stability of the Bernoulli–Euler beam under the action of a moving thermal source,” Dokl. Phys. 65, 67–71 (2020). https://doi.org/10.1134/S102833582002007X

    Article  Google Scholar 

  19. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, and L. V. Shtukin, “Nonlinear interaction of longitudinal and transverse vibrations of a rod at an internal combinational resonance in view of opto-thermal excitation of N/MEMS,” J. Sound Vib. 509, 116–247 (2021). https://doi.org/10.1016/j.jsv.2021.116247

    Article  Google Scholar 

  20. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, and L. V. Shtukin, “Nonlinear modal interaction between longitudinal and bending vibrations of a beam resonator under periodic thermal loading,” Vestn. St. Petersburg Univ.: Math. 55, 212–228 (2022). https://doi.org/10.1134/S106345412202008X

    Article  MathSciNet  Google Scholar 

  21. N. F. Morozov, D. A. Indeitsev, A. V. Lukin, I. A. Popov, and L. V. Shtukin, “On opto-thermally excited parametric oscillations of microbeam resonators. I,” Vestn. St. Petersburg Univ.: Math. 56, 231–244 (2023). https://doi.org/10.1134/S1063454123020127

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Council for Grants of the President of the Russian Federation for State Support of Young Russian Scientists MK-4577.2022.1.1.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to N. F. Morozov, A. V. Lukin, I. A. Popov or L. V. Shtukin.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by M. Shmatikov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, N.F., Indeitsev, D.A., Lukin, A.V. et al. On Thermo-Optically Excited Parametric Oscillations of Microbeam Resonators. II. Vestnik St.Petersb. Univ.Math. 56, 446–458 (2023). https://doi.org/10.1134/S1063454123040106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063454123040106

Keywords:

Navigation