Skip to main content
Log in

Mathematical Modeling of Turbulent Mixing in Gas Systems with a Chevron Contact Boundary using NUT3D, BIC3D, EGAK, and MIMOSA Numerical Codes

  • Published:
Programming and Computer Software Aims and scope Submit manuscript

Abstract

This paper presents results of computational and experimental studies of the evolution of turbulent mixing in three-layer gas systems with the development of hydrodynamic instabilities, in particular, the Richtmyer–Meshkov and Kelvin–Helmholtz instabilities, under the action of shock waves. One of the contact boundaries between gases is flat, while the other one has the form of a chevron. The numerical simulations are carried out both with and without initial perturbations of contact boundaries. It is shown that the roughness of the contact boundary significantly affects the width of the mixing zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 5.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

REFERENCES

  1. Richtmyer, R.D., Taylor instability in shock acceleration of compressed fluids, Commun. Pure Appl. Math., 1960.

  2. Meshkov, E.E., Instability of the interface between two gases that is accelerated by a shock wave, Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, 1969, pp. 151–158.

    Google Scholar 

  3. Helmholtz, H.L.F., Uber discontinuilisch Flussigkeits-Bewegungen, Monatsberichte Konigl. Preus. Akad. Wiss. Berlin, 1868.

    Google Scholar 

  4. Taylor, G.I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes: I, Proc. R. Soc., 1950, vol. A201.

  5. Bel’kov, S.A., Bondarenko, S.V., Demchenko, N.N., et al., Compression and burning of a direct-driven thermonuclear target under the conditions of inhomogeneous heating by multi-beam megajoule laser, PPCF, 2019.

    Book  Google Scholar 

  6. Nevmerzhitskii, N.V., Gidrodinamicheskie neustoichivosti i turbulentnoe peremeshivanie veshchestv. Laboratornoe modelirovanie (Hydrodynamic Instabilities and Turbulent Mixing of Substances: Laboratory modeling), Mikhailov, A.L., Ed., Sarov: RFYaTs VNIIEF, 2018.

  7. Luo, X., Guan, B., Si, T., et al., Richtmyer–Meshkov instability of a three-dimensional SF6–air interface with a minimum-surface feature, Phys. Rev. E, 2016.

  8. Brouillette, M., The Richtmyer–Meshkov instability, Annu. Rev. Fluid Mech., 2002.

  9. Nevmerzhitskii, N.V., Razin, A.N., Trutnev, Yu.A., et al., Study of the development of turbulent mixing in three-layer gas systems with an inclined contact boundary, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2008, pp. 12–17.

  10. Kozlov, V.I., Razin, A.I., Shaporenko, E.V., et al., Results of KORONA-based simulation of gas-dynamic experiments on turbulent mixing in two-dimensional flows, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2009, pp. 31–38.

  11. Razin, A.N., Interaction of a shock wave with an inclined contact boundary, Vopr. At. Nauki Tekh., Ser.: Teor. Prikl. Fiz., 2008, pp. 3–11.

  12. Henderson, L.F., On the refraction of shock waves, J. Fluid Mech., 1989, pp. 365–386.

  13. Hahn, M., Drikakis, D., Youngs, D.L., et al., Richtmyer–Meshkov turbulent mixing arising from an inclined material interface with realistic surface perturbations and reshoked flow, Phys. Fluids, 2011.

  14. Razin, A.N., Modelirovanie neustoichivosti i turbulentnogo peremeshivaniya v sloistykh sistemakh (Modeling Instability and Turbulent Mixing in Layered Systems), Sarov: RFYaTs VNIIEF, 2010.

  15. Zmushko, V.V., Razin, A.N., and Sinel’nikova, A.A., Influence of the initial roughness of interfaces on the instability development after shock-wave passage, J. Appl. Mech. Tech. Phys., 2022, vol. 63, pp. 400–407.

    Article  MathSciNet  Google Scholar 

  16. Bodrov, E.V., Zmushko, V.V., Nevmerzhitskii, N.V., Razin, A.N., Sen’kovskii, E.D., and Sotskov, E.A., Computational and experimental investigation of the development of turbulent mixing in a gas layering in passage of a shock wave, Fluid Dyn., 2018, vol. 53, pp. 385–393.

    Article  MathSciNet  Google Scholar 

  17. Smith, A.V., Holder, D.A., Barton, C.J., et al., Shock tube experiments on Richtmyer–Meshkov instability across a chevron profiled interface, Proc. 8th IWPCTM, 2001.

  18. Holder, D.A. and Barton, C.J., Shock tube Richtmyer–Meshkov experiments: Inverse chevron and half height, Proc. 9th IWPCTM, 2004.

  19. Holder, D.A., Smith, A.V., Barton, C.J., et al., Shock-tube experiments on Richtmyer–Meshkov instability growth using an enlarged double-bump perturbation, Laser Part. Beams, 2003.

  20. Ladonkina, M.E., Chislennoe Modelirovanie turbulentnogo peremeshivaniya s ispol’zovaniem vysokoproizvoditel’nykh sistem (Numerical Simulation of Turbulent Mixing Using High-Performance Systems), Moscow: Inst. Mat. Model., Ross. Akad. Nauk, 2005.

  21. Kuchugov, P.A., Dinamika protsessov turbulentnogo peremeshivaniya v lazernykh mishenyakh (Dynamics of Turbulent Mixing Processes in Laser Targets), Moscow: Inst. Prikl. Mat. im. Keldysha, 2014.

  22. Kuchugov, P.A., Modeling the implosion of a thermonuclear target on hybrid computing systems, Sb. Tr. Mezhdunar. Nauchn. Konf. “Parallel’nye vychislitel’nye tekhnologii” (Proc. Int. Sci. Conf. Parallel Computing Technologies), Kazan, 2017, pp. 399–409.

  23. Bragin, M.D. and Rogov, B.V., On the exact spatial splitting of a multidimensional scalar quasilinear hyperbolic conservation law, Dokl. Akad. Nauk, 2016, vol. 469, no. 2, pp. 143–147.

    MathSciNet  Google Scholar 

  24. Bragin, M.D., Implicit-explicit bicompact schemes for hyperbolic systems of conservation laws, Mat. Model., 2022, vol. 34, no. 6, pp. 3–21.

    MathSciNet  Google Scholar 

  25. Bragin, M.D. and Rogov, B.V., Conservative limiting method for high-order bicompact schemes as applied to systems of hyperbolic equations, Appl. Numer. Math., 2020, vol. 151, pp. 229–245.

    Article  MathSciNet  Google Scholar 

  26. Bragin, M.D., Influence of monotonization on the spectral resolution of bicompact schemes in the inviscid Taylor–Green vortex problem, Comput. Math. Math. Phys., 2022, vol. 62, pp. 608–623.

    Article  MathSciNet  Google Scholar 

  27. Groom, M. and Thornber, B., The influence of the initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer–Meshkov instability, Phys. D, 2020.

  28. Youngs, D.L., Three-dimensional numerical simulation of turbulent mixing by Rayleigh–Taylor instability, Phys. Fluids A, 1991.

  29. Tishkin, V.F., Nikishin, V.V., Popov, I.V., and Favorskii, A.P., Difference schemes of three-dimensional gas dynamics for problems on development of Richtmyer–Meshkov instability, Mat. Model., 1995, pp. 15–25.

  30. Vyaznikov, K.V., Tishkin, V.F., and Favorskii, A.P., Construction of monotonic difference schemes of higher order of approximation for systems of linear differential equations with constant coefficients of hyperbolic type, Mat. Model., 1989, pp. 95–120.

  31. Toro, E.F., Spruce, M., and Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 1994, pp. 25–34.

  32. Samarskii, A.A. and Sobol’, I.M., Examples of numerical calculations of temperature waves, Zh. Vychisl. Mat. Mat. Fiz., 1963, pp. 702–719.

  33. Avdoshina, E.V., Bondarenko, Yu.A., Gorbunov, A.A., Dmitrieva, Yu.S., Naumov, A.O., Pronevich, S.N., Rud’ko, N.M., and Tikhomirov, B.P., Study of the accuracy of various methods for averaging the thermal conductivity coefficient on the side of an integration cell when numerically solving the heat equation, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2014.

    Google Scholar 

  34. Kolganov, A.S., Automation of parallelization of Fortran programs for heterogeneous clusters, Extended Abstract of Cand. Sci. Dissertation, 2020.

  35. Kataev, N., Application of the LLVM compiler infrastructure to the program analysis in SAPFOR, Commun. Comput. Inf. Sci., 2018, vol. 965. https://doi.org/10.1007/978-3-030-05807-4_41

  36. Bakhtin, V.A. and Krukov, V.A., DVM-approach to the automation of the development of parallel programs for clusters, Program. Comput. Software, 2019, vol. 45, no. 3, pp. 121–132.

    Article  Google Scholar 

  37. Yanilkin, Yu.V., Belyaev, S.P., Bondarenko, Yu.A., Gavrilova, E.S., Goncharov, E.A., Gorbenko, A.D., Gorodnichev, A.V., Gubkov, E.V., Guzhova, A.R., Degtyarenko, L.I., Zharova, G.V., Kolobyanin, V.Yu., Sofronov, V.N., Stadnik, A.L., Khovrin, N.A., Chernyshova, O.N., Chistyakova, I.N., and Shemyakov, V.N., EGAK and TREK Eulerian numerical methods for modeling multidimensional flows of a multicomponent medium, Tr. RFYaTs VNIIEF. Nauchno-Issled. Izd. (Proc. RFNC-VNIIEF: Res. Ed.), Sarov: RFYaTs VNIIEF, 2008, vol. 12, pp. 54–65.

  38. Yanilkin, Yu.V., Models for closing the equations of Lagrangian gas dynamics and elastic-plasticity in multicomponent cells, Part 1: Isotropic models, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2017, no. 3, pp. 3–21.

  39. Yanilkin, Yu.V., Kolobyanin, V.Yu., Chistyakova, I.N., and Eguzhova, M.Yu., Application of the PPM method in calculations using the EGAK and TREK methods, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 2005, no. 4, pp. 69–79.

  40. Bakhrakh, S.M., Glagoleva, Yu.P., Samigulin, M.S., Frolov, V.D., Yanenko, N.N., and Yanilkin, Yu.V., Calculation of gas-dynamic flows based on the method of concentrations, Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 3, pp. 566–569.

    Google Scholar 

  41. Zmushko, V.V., Pletenev, F.A., Saraev, V.A., and Sofronov, I.D., Method for solving three-dimensional gas dynamics equations in mixed Lagrangian–Eulerian coordinates, Vopr. At. Nauki Tekh., Ser.: Metod. Program. Chisl. Resheniya Zadach Mat. Fiz., 1988, no. 1, pp. 22–27.

  42. Sofronov, I.D., Afanas’eva, E.A., Vinokurov, O.A., et al., MIMOSA software complex for solving multidimensional problems of continuum mechanics on the Elbrus-2 computer, Vopr. At. Nauki Tekh., Ser.: Mat. Model. Fiz. Protsessov, 1990, no. 2, pp. 3–9.

  43. Zmushko, V.V., Computation of convective flows and their realization in MIMOZA code, Proc. Int. Workshop New Models of Numerical Codes for Shock Wave Processes in Condensed Media, Oxford, 1997.

  44. Ladagin, V.K. and Pastushenko, A.M., On one scheme for calculating gas-dynamic flows, Chisl. Metody Mekh. Sploshn. Sredy, 1977, vol. 8, no. 2, pp. 66–72.

    Google Scholar 

  45. Benson, D.J., Volume of fluid interface reconstruction methods for multi-material problems, Appl. Mech. Rev., 2002, vol. 55, no. 2, pp. 151–165.

    Article  Google Scholar 

  46. Dyadechko, V. and Shashkov, M., Multi-material interface reconstruction from the moment data, Technical report LA-UR-07-0656, LANL, 2006.

Download references

ACKNOWLEDGMENTS

Kuchugov P.A. expresses his gratitude to the developers of SAPFOR and DVMH systems for the implementation of the parallel version of NUT3D.

The calculations by the Keldysh Institute of Applied Mathematics of the Russian Academy of Sciences were carried out using the computing infrastructure of the Supercomputer Center for Collective Use.

Funding

This work was carried out in the framework of the research program of the National Center for Physics and Mathematics under the state contract no. N.4ts.241.4D.23.1085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Kuchugov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Kornienko

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bragin, M.D., Zmitrenko, N.V., Zmushko, V.V. et al. Mathematical Modeling of Turbulent Mixing in Gas Systems with a Chevron Contact Boundary using NUT3D, BIC3D, EGAK, and MIMOSA Numerical Codes. Program Comput Soft 49, 854–872 (2023). https://doi.org/10.1134/S0361768823080042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0361768823080042

Navigation