Skip to main content
Log in

Timing is everything: how planting period shapes nutritional quality, mycobiota characteristics, and mycotoxin contamination in maize (Zea mays) grains

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Maize (Zea mays L.) is crucial in global grain markets and food/feed production. Fungal contamination in ears can adversely affect crop yield and diminish the nutritional value of grains. Moreover, many of the main pathogens affecting maize are producers of mycotoxins, which pose a risk to food safety. The area under late-planted maize in Argentina has increased, as more stable yields despite lower potential are expected in comparison to the early planting period. However, late-planted maize is prone to fungal infections and insect damage as well as mycotoxin contamination. This study aimed to evaluate the influence of maize planting periods (early vs. late) on grain nutritional quality, grain mycobiota, mycotoxin levels, and their interrelationships. Two experiments were conducted at Buenos Aires (Argentina) using thirteen genetically stable maize hybrids. Early planting occurred on October 5 (2020) whereas late planting was performed on December 12 (2020). Grain yield, number of grains per square meter, and thousand grain weight were measured at harvest and representative samples of grains were used for the laboratory analyses. The results demonstrated that early-planted maize exhibited high grain nutritional quality and low levels of toxigenic fungal mycobiota. In contrast, late-planted maize displayed low nutritional quality, increased presence of toxigenic mycobiota, and high contamination with elevated levels of fumonisins (a major mycotoxin). This study highlights the impact of planting period on grain yield, grain quality, and mycotoxin contamination, and it emphasizes the need for more research and regulatory considerations in this field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  • Abendroth, L. J., Miguez, F. E., Castellano, M. J., Carter, P. R., Messina, C. D., Dixon, P. M., & Hatfield, J. L. (2021). Lengthening of maize maturity time is not a widespread climate change adaptation strategy in the US Midwest. Global Change Biology, 27(11), 2426–2440.

    Article  CAS  PubMed  Google Scholar 

  • Administración Nacional de Medicamentos, Alimentos y Tecnología Médica (ANMAT). (2014). Análisis Microbiológico de los Alimentos. Metodología Analítica Oficial. Microorganismos Indicadores. Vol 3.

  • AOAC Official Method 985.18. (1995a). Zearalenol and zearalenone in corn. Liquid chromatographic method. AOAC Int. Official Methods of Analysis, (16th Ed) Gaithersburg, MD. 45–46.

  • AOAC Official Method 995.15. (1995b). Fumonisins B1, B2, and B3 in corn. Liquid chromatographic method. AOAC-IUPAC method. First action 1995.

  • AOAC Official Method 2000.03. (2000b). Ochratoxin A in barley Immunoaffinity by column HPLC. First Action 2000.

  • AOAC Official Method 994.08. (2000a). Aflatoxins in corn, almonds, brazil nuts, peanuts, and pistachio nuts. Liquid chromatographic method. AOAC Int. Official Methods of Analysis (17th Ed.). Gaithersburg, MD. 26.

  • Arias-Martín, M., Haidukowski, M., Farinós, G. P., & Patiño, B. (2021). Role of Sesamia nonagrioides and Ostrinia nubilalis as vectors of Fusarium spp. and contribution of corn borer-resistant Bt maize to mycotoxin reduction. Toxins, 13(11), 780.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barros, G., Magnoli, C., Reynoso, M. M., Ramirez, M. L., Farnochi, M. C., Torres, A., Dalcero, M., Sequeira, J., Rubinstein, C., & Chulze, S. (2009). Fungal and mycotoxin contamination in Bt maize and non-Bt maize grown in Argentina. World Mycotoxin Journal, 2(1), 53–60.

    Article  CAS  Google Scholar 

  • Blandino, M., Scarpino, V., Giordano, D., Sulyok, M., Krska, R., Vanara, F., & Reyneri, A. (2017). Impact of sowing time, hybrid and environmental conditions on the contamination of maize by emerging mycotoxins and fungal metabolites. Italian Journal of Agronomy, 12(3), 215–228.

    Google Scholar 

  • Bocianowski, J., Szulc, P., Waśkiewicz, A., & Cyplik, A. (2020). The effect of agrotechnical factors on Fusarium mycotoxins level in maize. Agriculture, 10(11), 528.

    Article  CAS  Google Scholar 

  • Castañares, E., Martínez, M., Cristos, D., Rojas, D., Lara, B., Stenglein, S., & Dinolfo, M. I. (2019). Fusarium species and mycotoxin contamination in maize in Buenos Aires province Argentina. European Journal of Plant Pathology, 155(4), 1265–1275.

    Article  Google Scholar 

  • Castellari, C. C., Cendoya, M. G., Valle, M. F., Barrera, V., & Pacin, A. M. (2015). Factores extrínsecos e intrínsecos asociados a poblaciones fúngicas micotoxigénicas de granos de maíz (Zea mays L.) almacenados en silo bolsas en Argentina. Revista Argentina de Microbiología, 47(4), 350–359.

    Article  PubMed  Google Scholar 

  • Chiotta, M. L., Fumero, M. V., Cendoya, E., Palazzini, J. M., Alaniz-Zanon, M. S., Ramirez, M. L., & Chulze, S. N. (2020). Toxigenic fungal species and natural occurrence of mycotoxins in crops harvested in Argentina. Revista Argentina De Microbiología, 52(4), 339–347.

    Article  PubMed  Google Scholar 

  • Codex Alimentarius Commission. (2019). General standard for contaminants and toxins in food and feed (Codex Stan 193–1995). Adopted in 1995, revised in 1997, 2006, 2008, 2009, amended in 2010, 2012, 2013, 2014, 2015, 2016, 2017, 2019. Food and Agriculture Organization of the United Nations (FAO), The World Health Organization (WHO). Available from: https://www.fao.org/fao-who-codexalimentarius. Accessed May 2023.

  • Comisión Nacional de Alimentos (CONAL). (2019). Artículo 156 quater: Límites para micotoxinas. De los Productos Alimenticios. In Código Alimentario Argentino, Cap III.

  • Drunday, V., & Pacin, A. M. (2013). Occurrence of Ochratoxin A in coffee beans, ground roasted coffee and soluble coffee and method validation. Food Control, 30(2), 675–678.

    Article  Google Scholar 

  • Erenstein, O., Jaleta, M., Sonder, K., Mottaleb, K., & Prasanna, B. M. (2022). Global maize production, consumption and trade: Trends and R&D implications. Food Security, 14(5), 1295–1319.

    Article  Google Scholar 

  • Espósito, M. A., & Ferraguti, F. (2019). Identificación de hongos en espigas de maíz tardío y acumulación de fumonisinas y DON durante el secado a campo. INTA Oliveros. Para Mejorar la Producción, 58, 129–133.

    Google Scholar 

  • European Food Safety Authority (EFSA). (2020). Outcome of a public consultation on the draft risk assessment of aflatoxins in food. EFSA Supporting Publication 2020, EN-1798. https://doi.org/10.2903/sp.efsa.2020.EN-1798.

  • European Commission (EC). (2007). Commission regulation No. 1126/2007 of 28 September 2007 amending Regulation No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Official Journal of European Union, 255, 14–17.

    Google Scholar 

  • European Commission (EC). (2010). Commission regulation No. 165/2010 of 26 February 2010 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards aflatoxins. Official Journal of European Union, 50, 8–12.

    Google Scholar 

  • Ferraguti, F., Castellarín, J., Papa, J. C., Mendez, J. M., Cristos, D., & Moschini, R. (2016). Determinación del momento óptimo de cosecha en maíz tardío. Evolución del rendimiento, calidad e inocuidad de granos durante el secado a campo. INTA Oliveros Ed.

  • Garrido, C. E., Pezzani, C. H., & Pacin, A. (2012). Mycotoxins occurrence in Argentina’s maize (Zea mays L.), from 1999 to 2010. Food Control, 25(2), 660–665.

    Article  CAS  Google Scholar 

  • Gasperini, A. M., Garcia-Cela, E., Sulyok, M., Medina, A., & Magan, N. (2021). Fungal diversity and metabolomic profiles in GM and isogenic non-GM maize cultivars from Brazil. Mycotoxin Research, 37, 39–48.

    Article  CAS  PubMed  Google Scholar 

  • Gerlach, W., & Nirenberg, H. (1982). The Genus Fusarium a Pictorial Atlas. Biologische Bundesanstalt für Land- und Forstwirtschaft Institutfür Mikrobiologie. Berlin-Dahlem. 1–406 pp.

  • Gimeno, A., & Martins, M. (2011). Micotoxinas y micotoxicosis en animales y humanos (3rd ed.). Special Nutrients, Inc.

  • Grosso, F., Saïd, S., Mabrouk, I., Fremy, J. M., Castegnaro, M., Jemmali, M., & Dragacci, S. (2003). New data on the occurrence of Ochratoxin A in human sera from patients affected or not by renal disease in Tunisia. Food and Chemical Toxicology, 41, 1133e1140.

    Article  Google Scholar 

  • Herrera, M., Cavero, J., Franco-Luesma, S., Álvaro-Fuentes, J., Ariño, A., & Lorán, S. (2023). Mycotoxins and crop yield in maize as affected by irrigation management and tillage practices. Agronomy, 13(3), 798.

    Article  CAS  Google Scholar 

  • Katoh, K., & Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Molecular Biology and Evolution, 30(4), 772–780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kępińska-Pacelik, J., & Biel, W. (2021). Alimentary Risk of Mycotoxins for Humans and Animals. Toxins, 13(11), 822.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kos, J., Anić, M., Radić, B., Zadravec, M., Janić Hajnal, E., & Pleadin, J. (2023). Climate Change - A global threat resulting in increasing mycotoxin occurrence. Foods, 12(14), 2704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krnjaja, V., Mandić, V., Stanković, S., Obradović, A., Vasić, T., Lukić, M., & Bijelić, Z. (2019). Influence of plant density on toxigenic fungal and mycotoxin contamination of maize grains. Crop Protection, 116, 126–131.

    Article  CAS  Google Scholar 

  • Lanubile, A., Maschietto, V., Borrelli, V. M., Stagnati, L., Logrieco, A. F., & Marocco, A. (2017). Molecular basis of resistance to Fusarium ear rot in maize. Frontiers in Plant Science, 8, 1774.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee, H. J., & Ryu, D. (2017). Worldwide occurrence of mycotoxins in cereals and cereal-derived food products: Public health perspectives of their co-occurrence. Journal of Agricultural and Food Chemistry, 65(33), 7034–7051.

    Article  CAS  PubMed  Google Scholar 

  • Leslie, J. F., & Summerell, B. A. (2008). The Fusarium laboratory manual. John Wiley & Sons Eds.

    Google Scholar 

  • Logrieco, A., Battilani, P., Leggieri, M. C., Jiang, Y., Haesaert, G., Lanubile, A., Mahuku, G., Mesterházy, A., Ortega-Beltran, A., Pasti, M., Smeu, I., Torres, A., Xu, J., & Munkvold, G. (2021). Perspectives on global mycotoxin issues and management from the MycoKey Maize Working Group. Plant Disease, 105(3), 525–537. https://doi.org/10.1094/PDIS-06-20-1322-FE

    Article  CAS  PubMed  Google Scholar 

  • Maddonni, G. A. (2012). Analysis of the climatic constraints to maize production in the current agricultural region of Argentina-a probabilistic approach. Theoretical and Applied Climatology, 107(3–4), 325–345.

    Article  Google Scholar 

  • Moschini, R., Borsarelli, M., Martinez, M. I., Presello, D. A., Ferraguti, F., Cristos, D., & Rojas, D. (2018). Analysis of preharvest meteorological conditions in relation to concentration of fumonisins in maize. Australasian Plant Pathology, 49(6), 665–677.

    Article  Google Scholar 

  • Munhoz, A. T., Carvalho, R. V. D., Querales, P. J., Gonçalves, F. P., & Camargo, L. E. A. (2015). Relationship between resistance of tropical maize inbred lines for resistance to ear rot and fumonisins accumulation caused by Fusarium verticillioides. Summa Phytopathologica, 41, 144–148.

    Article  Google Scholar 

  • Nelson, P. E., Toussoun, T. A., & Marasas, W. F. O. (1983). Fusarium species. The Pennsylvania State University Press.

    Google Scholar 

  • Olocco-Diz, M. J., Iglesias, B. F., & Schang, M. J. (2017). Estimación del contenido energético de maíces argentinos a partir de la espectrofotometría del infrarrojo cercano (NIRS). Cámara Argentina de Empresas de Nutrición Animal.

  • Osborne, B. G. (2006). Near-infrared spectroscopy in food analysis. Encyclopedia of Analytical Chemistry: applications, theory and instrumentation. John Wiley & Sons.

    Google Scholar 

  • Papucci, S., González, A., Cruciani, M., & Tuttolomondo, G. (2016). Maíces Tempranos versus Tardíos. Agromensajes, 46, 39–45.

    Google Scholar 

  • Pérez-Pizá, M. C., Grijalba, P. E., Cejas, E., Chamorro Garcés, J. C., Ferreyra, M., Zilli, C., Prevosto, L., & Balestrasse, K. (2021). Effects of non-thermal plasma technology on Diaporthe longicolla cultures and mechanisms involved. Pest Management Science, 77(4), 2068–2077.

    Article  PubMed  Google Scholar 

  • Picot, A., Hourcade-Marcolla, D., Barreau, C., Pinson-Gadais, L., Caron, D., Richard-Forget, F., & Lannou, C. (2012). Interactions between Fusarium verticillioides and Fusarium graminearum in maize ears and consequences for fungal development and mycotoxin accumulation. Plant Pathology, 61, 140–151.

    Article  CAS  Google Scholar 

  • Pinotti, L., & Dell’Orto, V. (2011). Feed safety in the feed supply chain. Biotechnology Agronomy and Society, 15, 9–14.

    Google Scholar 

  • Pitt, J. I. (2012). Economics of mycotoxins: Evaluating costs to society and cost-effectiveness of interventions. IARC Scientific Publications, 158, 119–129.

    Google Scholar 

  • Pitt, J. I., & Taylor, J. W. (2014). Aspergillus, its sexual states and the new International Code of Nomenclature. Mycologia, 106(5), 1051–1062.

    Article  PubMed  Google Scholar 

  • Ponce-García, N., Ortíz-Islas, S., García-Lara, S., & Serna-Saldivar, S. O. (2020). Physical and chemical parameters, Fusarium verticillioides growth and fumonisin production in kernels of nine maize genotypes. Journal of Cereal Science, 96, 103128.

    Article  Google Scholar 

  • Qi, Z., Tian, L., Zhang, H., Lei, Y., & Tang, F. (2023). Fungal community analysis of hot spots in bulk maize under different storage conditions. LWT – Food Science and Technology, 182(1), 114819.

    Article  CAS  Google Scholar 

  • Romer Laboratories, Inc. (1994). Quantitative method for DON, aflatoxin B1, and zearalenone. Method MY8402s, version 94.2. https://www.romerlabs.com/shop/inter_en/clean-up-columns/spe-columns/mycosep/

  • Rosa-Junior, O. F., Dalcin, M. S., Nascimento, V. L., Haesbaert, F. M., Ferreira, T. P. D. S., Fidelis, R. R., de Almeida Sarmento, R., de Souza, W., Aguiar, R., de Oliveira, E. E., & Santos, G. R. D. (2019). Fumonisin production by Fusarium verticillioides in maize genotypes cultivated in different environments. Toxins, 11(4), 215.

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rossi, R. L., Gimenez-Pecci, M. D. L. P., Guerra, F. A., Plazas, M. C., Brücher, E., Guerra, G. D., Torrico, G. D., Ramallo, A. K., Camiletti, B. X., Maurino, M. F., Barontini, J. M., Ferrer, M., Lucini, E., & Laguna, I. G. (2017). Enfermedades del maíz de siembra tardía causadas por hongos. In El mismo maíz, un nuevo desafío: Compendio primer congreso de maíz tardío. Dow Agrosciences Argentina, Buenos Aires, Argentina, 1–14 pp. ISBN 978–987–98384–3–3.

  • Samson, R. A., Hoekstra, E. S., Frisvad, J. C., & Filtenborg, O. (1995). Introduction to food-borne fungi (4th ed.). Central Bureau Voor Schimmel Cultures.

    Google Scholar 

  • Sherif, M., Kirsch, N., Splivallo, R., Pfohl, K., & Karlovsky, P. (2023). The role of mycotoxins in interactions between Fusarium graminearum and F. verticillioides growing in saprophytic cultures and co-infecting maize plants. Toxins, 15(9), 575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, J. J., Viaro, H. P., Ferranti, L. S., Oliveira, A. L. M., Ferreira, J. M., Ruas, C. F., Ono, E. Y. S., & Fungaro, M. H. P. (2017). Genetic structure of Fusarium verticillioides populations and occurrence of fumonisins in maize grown in Southern Brazil. Crop Protection, 99, 160–167.

    Article  CAS  Google Scholar 

  • Simões, D., Carbas, B., Soares, A., Freitas, A., Silva, A. S., Brites, C., & Andrade, E. D. (2023). Assessment of agricultural practices for controlling Fusarium and mycotoxins contamination on maize grains: Exploratory study in maize farms. Toxins, 15(2), 136.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stamatakis, A. (2014). RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30(9), 1312–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Summerell, B. A. (2003). A utilitarian approach to Fusarium identification. Plant Disease, 87, 117–127.

    Article  PubMed  Google Scholar 

  • Trucksess, M., Page, S., Wood, G., & Cho, T. H. (1998). Determination of deoxynivalenol in white flour; whole wheat flour, and bran by solid-phase extraction/liquid chromatography: Interlaboratory Study. Journal of AOAC International, 81(4), 880–886.

    Article  CAS  PubMed  Google Scholar 

  • United States Department of Agriculture (USDA). (2021b). Feedgrains Sector at a Glance. USDA Economic Research Service. Available from: https://www.ers.usda.gov/topics/crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance/. Accessed April 2023.

  • United States Department of Agriculture (USDA). (2021a). World Agricultural Supply and Demand Estimates at a Glance. USDA Economic Research Service. Available from: https://www.ers.usda.gov/topics/farm-economy/commodity-outlook/wasde-projections-at-a-glance/. Accessed April 2023.

  • Xi, K., Shan, L., Yang, Y., Zhang, G., Zhang, J., & Guo, W. (2021). Species diversity and chemotypes of Fusarium species associated with maize stalk rot in Yunnan province of southwest China. Frontiers in Microbiology, 12, 652062.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Universidad del Salvador (80020210100015US). We extend our sincere appreciation to Dr. Gustavo Striker and Dra. Inés Dinolfo for their valuable contributions to this scientific publication. Their expertise and guidance have significantly enhanced the quality of our research. The authors also acknowledge the financial support provided by Fundación de Investigaciones Científicas Teresa Benedicta de la Cruz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Pérez-Pizá.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2112 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pérez-Pizá, M.C., Vicente, S., Castellari, C.C. et al. Timing is everything: how planting period shapes nutritional quality, mycobiota characteristics, and mycotoxin contamination in maize (Zea mays) grains. Eur J Plant Pathol (2024). https://doi.org/10.1007/s10658-024-02820-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10658-024-02820-5

Keywords

Navigation