Skip to main content
Log in

Influence of erbium substitution on structural, optical and dielectric properties of strontium hexaferrite

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

This paper reports the influence of erbium substitution on structural, electrical, dielectric and optical properties of SrFe12−xErxO19 (x = 0.0, 0.5, 1.0, 1.5 and 2.0) samples synthesized by sol–gel combustion method. Powder X-ray diffraction pattern analysis confirms the hexagonal structure of SrFe12−xErxO19 samples with space group P63/mmc. \(\alpha\)-Fe2O3 phase is not present in the prepared samples. The value of lattice parameters (a and c) varies from 5.8561–5.8898 Å and 22.742–23.0821 Å, respectively. Morphological and elemental analyses were done by scanning electron microscopy and energy dispersive X-ray, respectively. Fourier-transform infrared spectroscopy spectra show the absorption band in the 402–620 cm−1 region, which is due to Fe–O stretching vibration in the octahedral and tetrahedral sites. The band gap (Eg) of the SrFe12−xErxO19 samples decreases from 4.10 to 4.06 eV with Er3+ ions substitution. The photoluminescence (PL) emission spectra were observed at 364 nm. The value of dielectric constant decreases at higher frequency due to ceasing effect of polarization. The complex impedance spectroscopy analysis reveals that the prepared samples show non-Debye type dielectric relaxation behaviour. The increase in dielectric constant and decrease in dielectric loss with increasing Er3+ concentration makes the prepared samples a potential candidate for different device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21

Similar content being viewed by others

References

  1. Pfeiffer H, Chantrell R W, Görnert P, Schüppel W, Sinn E and Rosler M 1993 J. Magn. Magn. Mater. 125 373

    Article  CAS  Google Scholar 

  2. Almessiere M A, Slimani Y, Gungunes H, Manikandan A and Baykal A 2019 Results Phys. 13 102166

    Article  Google Scholar 

  3. Buchner V W, Schliebs R, Winter G and Buchel K H 1989 Industrial inorganic chemistry (Weinheim: VCH) p. 1

  4. Rane V A, Meena S S, Gokhale S P, Yusuf S M, Phatak G J and Date S K 2013 J. Electron. Mater. 4 761

    Article  Google Scholar 

  5. Smit J and Wijn H P J 1959 Ferrites (Eindhoven, The Netherlands: Philips Technical Library) p. 204

  6. Coey J M D 2001 J. Alloys Compd. 326 2

    Article  CAS  Google Scholar 

  7. Kazin P E, Trusov L A, Zaitsev D D, Tretyakov Y D and M Jansen M 2008 J. Magn. Magn. Mater. 320 1068

  8. Iqbal M J, Ashiq M N, Gomez P H and Munoz J M 2008 J. Magn. Magn. Mater. 320 881

    Article  CAS  Google Scholar 

  9. Thakur A, Singh R R and Barman P B 2012 Electron. Mater. Lett. 8 595

    Article  CAS  Google Scholar 

  10. Lechevallier L, Breton J M L, Wang J F and Harris I R 2004 J. Magn. Magn. Mater. 269 192

    Article  CAS  Google Scholar 

  11. Zi Z F, Sun Y P, Zhu X B, Yang Z R, Dai J M and Song W H 2008 J. Magn. Magn. Mater. 320 2746

    Article  CAS  Google Scholar 

  12. Sharma P, Verma A, Sidhu R K and Pandey O P 2003 J. Alloys Compd. 361 257

    Article  CAS  Google Scholar 

  13. Kools F, Morel A, Grossinger R, Le Breton J M and Tenaud P 2002 J. Magn. Magn. Mater. 242 1270

    Article  Google Scholar 

  14. Pereira F M M, Santos M R P, Sohn R S T M, Almeida J S, Medeiros A M L, Costa M M et al 2009 J. Mater. Sci.: Mater. Electron. 20 408

    CAS  Google Scholar 

  15. Cho H and Kim S 1999 IEEE Trans. Magn. 35 3151

    Article  CAS  Google Scholar 

  16. Nedkov I, Petkov A and Karpov A 1990 IEEE Trans. Magn. 26 1483

    Article  CAS  Google Scholar 

  17. Meshram M R, Agrawal N K, Shina B and Misra P S 2004 J. Magn. Magn. Mater. 271 207

    Article  CAS  Google Scholar 

  18. Yang Y, Liu X, Feng S, Kan X, Lv Q, Zhao Y et al 2020 Chin. J. Phys. 63 337

    Article  CAS  Google Scholar 

  19. Yang Y, Wang F, Shao J, Mujasam K and Huang D 2018 Chin. J. Phys. 56 1789

    Article  CAS  Google Scholar 

  20. Miura K, Masuda M, Itoh M, Horikawa T and Machida K 2006 J. Alloys Compd. 408–412 1391

    Article  Google Scholar 

  21. Iqbal Z, Muneer M, Farooq S, Ahamd Z, Basit M A, Ashiq M N et al 2019 J. Mater. Sci.: Mater. Electron. 30 4658

    CAS  Google Scholar 

  22. Ounnunkad S 2006 Solid State Commun. 138 472

    Article  CAS  Google Scholar 

  23. Ponpandian N, Balaya P and Narayanasamy A 2002 J. Phys.: Condens. Matter 14 3221

    CAS  Google Scholar 

  24. Rabinkin L I and Novikova Z I 1960 Ferrites (Minsk: Doklady Akademii Nauk SSSR) p. 146

  25. Mahapatro J and Agrawal S 2022 J. Alloys. Compd. 907 164405

    Article  CAS  Google Scholar 

  26. Zhong W, Ding W, Zhang N, Hong J, Yan Q and Du Y1997 J. Magn. Magn. Mater. 168 196

  27. Leccabue F, Muzio O A, Kany M S E, Calestani G and Albanese G 1987 J. Magn. Magn. Mater. 68 201

    Article  CAS  Google Scholar 

  28. Wang J F, Ponton C B and Harris I R 2004 J. Alloys Compd. 369 170

    Article  CAS  Google Scholar 

  29. Fang J, Wang J, Gan L, Ng S, Ding J and Liu X 2000 J. Am. Ceram. Soc. 83 1049

    Article  CAS  Google Scholar 

  30. Shafi K V P M and Gedanken A 1999 Nano. Struct. Mater. 12 29

    Article  Google Scholar 

  31. Carreno T G, Morales M P and Serna C J 2000 Mater. Lett. 43 97

    Article  Google Scholar 

  32. Rezlescu L, Rezlescu E, Popa P D and Rezlescu N 1999 J. Magn. Magn. Mater. 193 288

    Article  CAS  Google Scholar 

  33. Chawla S K, Mudsainiyan R K, Meena S S and Yusuf S M 2014 J. Magn. Magn. Mater. 350 23

    Article  CAS  Google Scholar 

  34. Hessien M M, Rashad M M and Barawy K E 2008 J. Magn. Magn. Mater. 320 336

    Article  CAS  Google Scholar 

  35. Ashiq M N, Iqbal M J and Gul I H 2011 J. Magn. Magn. Mater. 323 259

    Article  CAS  Google Scholar 

  36. Chuhan C C, Kagdi A R, Jotania R B, Upadhyay A, Sandhu C S, Shirsath S E et al 2018 Ceram. Int. 44 17812

    Article  Google Scholar 

  37. Norouzzadeh P, Mabhouti K, Golzan M M and Naderali N 2020 Appl. Phys. A: Mater. Sci. Process. 126 1

    Article  Google Scholar 

  38. Sen S K, Barman U C, Manir M S and Mondal P 2020 Adv. Nat. Sci. Nanosci. Nanotechnol. 11 025004

  39. Mustapha S, Tijani J O, Ndamitso M M, Abdulkareem A S, Shuaib D T, Amigun A T et al 2021 Int. Nano Lett. 11 241

    Article  CAS  Google Scholar 

  40. Jogi J K, Singhal S K, Jangir R, Dwivedi A, Tanna A R, Singh R et al 2022 J. Electron. Mater. 51 5482

    Article  CAS  Google Scholar 

  41. Kibasomba P M, Dhlamini S, Maaza M, Liu C P, Rashad M M, Rayan D A et al 2018 Results Phys. 9 628

    Article  Google Scholar 

  42. Sharbati A, Amiri G and Mousarezaei R 2015 J. Electron. Mater. 44 715

    Article  Google Scholar 

  43. Sharma M and Kashyap S C 2019 Ceram. Int. 45 11226

    Article  CAS  Google Scholar 

  44. Wagner T R 1998 J. Solid State Chem. 136 120

    Article  CAS  Google Scholar 

  45. Rashad M M and Ibarhim I A 2013 J. Supercond. Nov. Magn. 26 1639

    Article  CAS  Google Scholar 

  46. Chandrakanta K, Jena R, Pal P, Abdullah M F, Kaushik S D and Singh A K 2021 J. Alloys Compd. 886 161294

    Article  CAS  Google Scholar 

  47. Thakur A, Singh R R and Barman P B 2013 Mater. Chem. Phys. 141 562

    Article  CAS  Google Scholar 

  48. Mohammed J, Suleiman A B, Carol T T T, Hafeez H Y, Sharma J, Maji P K et al 2018 Chin. Phys. B 27 128100

  49. Weiguang J S R, Noha H M, Parka S H, Leea B R, Kima J H and Jeonga J H 2019 Dalton Trans.

  50. Du P and Yu J S 2017 Chem. Eng. J. 327 109

    Article  CAS  Google Scholar 

  51. Li J and Guan X Y 2019 Micro. Nano Lett. 14 1307

    CAS  Google Scholar 

  52. Dai S, Yu C, Zhou G, Zhang J, Wang G and Hu L 2006 J. Lumin. 117 39

    Article  CAS  Google Scholar 

  53. Kiran N, Baker A P and Wang G 2017 J. Mol. Struct. 1129 211

    Article  CAS  Google Scholar 

  54. Hippel A V 1954 Dielectrics and waves. John Wiley & Sons, New York

    Google Scholar 

  55. Gul I H and Maqsood A 2007 J. Magn. Magn. Mater. 316 13

    Article  CAS  Google Scholar 

  56. Rana G, Johri U C and Asokan K 2013 EPL 103 17008

    Article  Google Scholar 

  57. Wagner K W 1973 Ann. Phys. 40 817

    Google Scholar 

  58. Patil D R, Lokare S A, Devan R, Chougule S, Kanamadi C, Kolekar Y D et al 2007 Mater. Chem. Phys. 10 4254

    Google Scholar 

  59. Ashiq M N, Qureshi R B, Malana M A and Ehsan M F 2015 J. Alloys Compd. 651 266

    Article  CAS  Google Scholar 

  60. Jonscher A K 1983 Dielectric relaxation in solids (London: Chelsea, Dielectric Press)

    Google Scholar 

  61. Mahapatro J and Agrawal S 2021 Ceram. Int. 47 20529

    Article  CAS  Google Scholar 

  62. Unal B, Almessiere M A, Trukhanov A V, Baykal A, Slimani Y, Silibin M V et al 2022 J. Mater. Res. Technol. 17 2975

    Article  CAS  Google Scholar 

  63. Puri M, Bahel S and Narang S B 2016 J. Electron. Mater. 45 959

    Article  CAS  Google Scholar 

  64. Pubby K, Narang S B, Chawla S K and Mudsainiyan R K 2016 J. Mater. Sci.: Mater. Electron. 27 11220

    CAS  Google Scholar 

  65. Parida B N and Das P R 2014 J. Alloys Compd. 85 234

    Article  Google Scholar 

  66. Parida B N, Das P R, Padhee R and Choudhary R N P 2012 J. Phys. Chem. Solids 73 713

    Article  CAS  Google Scholar 

  67. Rafiq M A, Rafiq M N and Saravanan K V 2015 Ceram. Int. 41 11436

    Article  CAS  Google Scholar 

  68. Kambale R C, Shaikh P A, Bhosale C H, Rajpure K Y and Kolekar Y D 2009 Smart Mater. Struct. 18 85014

    Article  Google Scholar 

  69. Bai Y, Zhou J, Gui Z and Li L L 2001 J. Magn. Magn. Mater. 278 208

    Article  Google Scholar 

  70. Patange S M, Shirsath S E, Lohar K S, Jadhav S S, Kulkarni N and Jadhav K M 2011 Phys. B: Condens. Mat. 406 663

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadhana Agrawal.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahapatro, J., Agrawal, S. Influence of erbium substitution on structural, optical and dielectric properties of strontium hexaferrite. Bull Mater Sci 47, 26 (2024). https://doi.org/10.1007/s12034-023-03093-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03093-0

Keywords

Navigation