Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of polysubstituted azepanes by dearomative ring expansion of nitroarenes

Abstract

The synthesis of functionalized nitrogen heterocycles is integral to discovering, manufacturing and evolving high-value materials. The availability of effective strategies for heterocycle synthesis often biases the frequency of specific ring systems over others in the core structures of bioactive leads. For example, while the six- and five-membered piperidine and pyrrolidine are widespread in medicinal chemistry libraries, the seven-membered azepane is essentially absent and this leaves open a substantial area of three-dimensional chemical space. Here we report a strategy to prepare complex azepanes from simple nitroarenes by photochemical dearomative ring expansion centred on the conversion of the nitro group into a singlet nitrene. This process is mediated by blue light, occurs at room temperature and transforms the six-membered benzenoid framework into a seven-membered ring system. A following hydrogenolysis provides the azepanes in just two steps. We have demonstrated the utility of the strategy with the synthesis of several azepane analogues of piperidine drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Development of a photochemical strategy to convert nitroarenes into saturated azepane.
Fig. 2: Substrate scope using para-substituted nitroarenes to access C4-substituted azepanes.
Fig. 3: Substrate scope using meta- and ortho-substituted nitroarenes to access C3- and C4-substituted azepanes.
Fig. 4: Substrate scope using polysubstituted nitroarenes to access syn-polysubstituted azepanes.
Fig. 5: Application of the methodology in the preparation of azepane-based analogues of piperidine-containing drugs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Computational data can be found through Figshare: https://doi.org/10.6084/m9.figshare.21432345.

References

  1. Pennington, L. D. & Moustakas, D. T. The necessary nitrogen atom: a versatile high-impact design element for multiparameter optimization. J. Med. Chem. 60, 3552–3579 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Shearer, J., Castro, J. L., Lawson, A. D. G., MacCoss, M. & Taylor, R. D. Rings in clinical trials and drugs: present and future. J. Med. Chem. 65, 8699–8712 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Aldeghi, M., Malhotra, S., Selwood, D. L. & Chan, A. W. E. Two- and three-dimensional rings in drugs. Chem. Biol. Drug Des. 83, 450–461 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lovering, F., Bikker, J. & Humblet, C. Escape from flatland: increasing saturation as an approach to improving clinical success. J. Med. Chem. 52, 6752–6756 (2009).

    Article  CAS  PubMed  Google Scholar 

  7. Campos, K. R. et al. The importance of synthetic chemistry in the pharmaceutical industry. Science 363, eaat0805 (2019).

    Article  CAS  PubMed  Google Scholar 

  8. Blakemore, D. C. et al. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 10, 383–394 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Jurczyk, J. et al. Single-atom logic for heterocycle editing. Nat. Synth. 1, 352–364 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Weintraub, P. M., Sabol, J. S., Kane, J. M. & Borcherding, D. R. Recent advances in the synthesis of piperidones and piperidines. Tetrahedron 59, 2953–2989 (2003).

    Article  CAS  Google Scholar 

  11. Chiacchio, M. A., Legnani, L., Chiacchio, U. & Iannazzo, D. in More Synthetic Approaches to Nonaromatic Nitrogen Heterocycles (ed. Faisca Phillips, A. M.) 529–558 (2022).

  12. Glorius, F. Asymmetric hydrogenation of aromatic compounds. Org. Biomol. Chem. 3, 4171–4175 (2005).

    Article  CAS  PubMed  Google Scholar 

  13. Mainolfi, N. et al. Discovery of 4-((2S,4S)-4-ethoxy-1-((5-methoxy-7-methyl-1H-indol-4-yl)methyl)piperidin-2-yl)benzoic acid (LNP023), a factor B inhibitor specifically designed to be applicable to treating a diverse array of complement mediated diseases. J. Med. Chem. 63, 5697–5722 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Zhou, Y.-G. Asymmetric hydrogenation of heteroaromatic compounds. Acc. Chem. Res. 40, 1357–1366 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Wang, D.-S., Chen, Q.-A., Lu, S.-M. & Zhou, Y.-G. Asymmetric hydrogenation of heteroarenes and arenes. Chem. Rev. 112, 2557–2590 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Huck, C. J. & Sarlah, D. Shaping molecular landscapes: recent advances, opportunities, and challenges in dearomatization. Chem 6, 1589–1603 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gritsan, N. P. & Platz, M. S. Kinetics, spectroscopy, and computational chemistry of arylnitrenes. Chem. Rev. 106, 3844–3867 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Borden, W. T. et al. The interplay of theory and experiment in the study of phenylnitrene. Acc. Chem. Res. 33, 765–771 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Odum, R. A. & Aaronson, A. M. Intermolecular reaction of an aryl nitrene. J. Am. Chem. Soc. 91, 5680–5681 (1969).

    Article  CAS  Google Scholar 

  20. Horner, L. & Christmann, A. Nitrenes. Angew. Chem. Int. Ed. 2, 599–608 (1963).

    Article  Google Scholar 

  21. Patel, S. C. & Burns, N. Z. Conversion of aryl azides to aminopyridines. J. Am. Chem. Soc. 144, 17797–17802 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Brase, S. & Keck, D. Product class 35: aryl azides. In Science of Synthesis: Houben–Weyl Methods of Molecular Transformations (eds Ramsden, C. A. & Bellus, D.) 10.1055/sos-SD-031-02074 (2007).

  23. Cadogan, J. I. G., Grace, D. S. B., Lim, P. K. K. & Tait, B. S. Reduction of nitro- and nitroso-compounds by tervalent phosphorus reagents. Part XII. Conversion of aryl 2-nitroaryl ethers into novel 3-aryl-2,3-dihydro-1,3,2-benzoxazaphosph(V)oles (oxazaphosphoranes) and their 2-oxo-derivatives. J. Chem. Soc. Perkin Trans. 1, 2376–2385 (1975).

    Article  Google Scholar 

  24. Atherton, F. R. & Lambert, R. W. Nitrenes generated from nitro-compounds by various phosphorus reagents in heterocyclic synthesis. A convenient route to substituted 3H-azepines. J. Chem. Soc. Perkin Trans. 1, 1079–1084 (1973).

    Article  Google Scholar 

  25. Li, G. et al. An improved PIII/PV═O-catalyzed reductive C–N coupling of nitroaromatics and boronic acids by mechanistic differentiation of rate- and product-determining steps. J. Am. Chem. Soc. 142, 6786–6799 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, G., Lavagnino, M. N., Ali, S. Z., Hu, S. & Radosevich, A. T. Tandem C/N-difunctionalization of nitroarenes: reductive amination and annulation by a ring expansion/contraction sequence. J. Am. Chem. Soc. 145, 41–46 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Ruffoni, A., Hampton, C., Simonetti, M. & Leonori, D. Photoexcited nitroarenes for the oxidative cleavage of alkenes. Nature 610, 81–86 (2022).

    Article  CAS  PubMed  Google Scholar 

  28. Cu, A. & Testa, A. C. Photochemistry of the nitro group in aromatic heterocyclic molecules. J. Phys. Chem. 79, 644–646 (1975).

    Article  CAS  Google Scholar 

  29. Odum, R. A. & Brenner, M. Rearrangement on deoxygenation of nitrosobenzene. J. Am. Chem. Soc. 88, 2074–2075 (1966).

    Article  CAS  Google Scholar 

  30. Iddon, B., Meth-Cohn, O., Scriven, E. F. V., Suschitzky, H. & Gallagher, P. T. Developments in arylnitrene chemistry: syntheses and mechanisms [new synthetic methods (31)]. Angew. Chem. Int. Ed. 18, 900–917 (1979).

    Article  Google Scholar 

  31. Gritsan, N. P., Yuzawa, T. & Platz, M. S. Direct observation of singlet phenylnitrene and measurement of its rate of rearrangement. J. Am. Chem. Soc. 119, 5059–5060 (1997).

    Article  CAS  Google Scholar 

  32. Marcinek, A. et al. Unusually long lifetimes of the singlet nitrenes derived from 4-azido-2,3,5,6-tetrafluorobenzamides. J. Phys. Chem. 98, 412–419 (1994).

    Article  CAS  Google Scholar 

  33. DeGraff, B. A., Gillespie, D. W. & Sundberg, R. J. Phenyl nitrene. Flash photolytic investigation of the reaction with secondary amines. J. Am. Chem. Soc. 96, 7491–7496 (1974).

    Article  CAS  Google Scholar 

  34. Chapman, O. L. & Le Roux, J. P. 1-Aza-1,2,4,6-cycloheptatetraene. J. Am. Chem. Soc. 100, 282–285 (1978).

    Article  CAS  Google Scholar 

  35. Satake, K. et al. Synthesis and characterization of 2H-, 3H- and 4H-azepine: the first observation of the thermal distribution equilibrium of azepines. J. Chem. Soc. Chem. Commun. https://doi.org/10.1039/C39910001154 (1991).

  36. Negele, S., Wieser, K. & Severin, T. Photochemical oxidation of hydrocarbons by nitropyridinium salts. J. Org. Chem. 63, 1138–1143 (1998).

    Article  CAS  Google Scholar 

  37. Burdzinski, G. et al. Early events in the photochemistry of aryl azides from femtosecond UV/vis spectroscopy and quantum chemical calculations. J. Am. Chem. Soc. 128, 13402–13411 (2006).

    Article  CAS  PubMed  Google Scholar 

  38. Nairoukh, Z., Wollenburg, M., Schlepphorst, C., Bergander, K. & Glorius, F. The formation of all-cis-(multi)fluorinated piperidines by a dearomatization–hydrogenation process. Nat. Chem. 11, 264–270 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Blakemore, D. et al. (eds) in Synthetic Methods in Drug Discovery Vol. 1 1–69 (The Royal Society of Chemistry, 2016).

  40. West, M. J., Fyfe, J. W. B., Vantourout, J. C. & Watson, A. J. B. Mechanistic development and recent applications of the Chan–Lam amination. Chem. Rev. 119, 12491–12523 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Leonori, D. & Aggarwal, V. K. Lithiation–borylation methodology and its application in synthesis. Acc. Chem. Res. 47, 3174–3183 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. Matteson, D. S., Collins, B. S. L., Aggarwal, V. K. & Ciganek, E. in Organic Reactions 427–860.

  43. Delhaye, L., Merschaert, A., Diker, K. & Houpis, I. N. Synthesis of 4,4′-disubstituted azepines via ring-closing metathesis reaction and asymmetric arylation of lactones. Synthesis 9, 1437–1442 (2006).

  44. Guillemont, J. E. G., Lancois, D. F. A., Motte, M. M. S., Koul, A. & Balemans, W. M. A. PCT Int. Appl. WO 2013021051 A2013021051 2020130214 (2013).

  45. Lamara, K. & Smalley, R. K. 3H-azepines and related systems. Part 4. Preparation of 3H-azepin-2-ones and 6H-azepino[2,1-b]quinazolin-12-ones by photo-induced ring expansions of aryl azides. Tetrahedron 47, 2277–2290 (1991).

    Article  CAS  Google Scholar 

  46. Genovino, J., Sames, D., Hamann, L. G. & Touré, B. B. Accessing drug metabolites via transition-metal catalyzed C−H oxidation: the liver as synthetic inspiration. Angew. Chem. Int. Ed. 55, 14218–14238 (2016).

    Article  CAS  Google Scholar 

  47. St. Jean, D. J. Jr & Fotsch, C. Mitigating heterocycle metabolism in drug discovery. J. Med. Chem. 55, 6002–6020 (2012).

    Article  Google Scholar 

  48. Ertl, P., Altmann, E., Racine, S. & Lewis, R. Ring replacement recommender: ring modifications for improving biological activity. Eur. J. Med. Chem. 238, 114483 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Goldberg, F. W., Kettle, J. G., Kogej, T., Perry, M. W. D. & Tomkinson, N. P. Designing novel building blocks is an overlooked strategy to improve compound quality. Drug Discov. Today 20, 11–17 (2015).

    Article  PubMed  Google Scholar 

  50. Hu, Y., Stumpfe, D. & Bajorath, J. Recent advances in scaffold hopping. J. Med. Chem. 60, 1238–1246 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Karakas, E., Simorowski, N. & Furukawa, H. Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475, 249–253 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schubart, A. et al. Small-molecule factor B inhibitor for the treatment of complement-mediated diseases. Proc. Natl Acad. Sci. USA 116, 7926–7931 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

D.L. thanks the Engineering and Physical Sciences Research Council for a grant (EP/V046799/1), the European Research Council for a research grant (758427) and the Leverhulme Trust for additional support (Philip Leverhulme Prize to D.L.). R.S.-B. thanks the European Union Horizon 2020 innovation programme for the Marie Skłodowska-Curie grant, agreement no. 956324 (PhotoReAct). E.M. thanks Ministerio de Universidades of the Spanish Government and the European Union Funds for a Postdoctoral Margarita Salas (NextGenerationEU) Fellowship (MSALAS-2022-19993). We thank C. Vermeeren (RWTH Aachen University) for help with the purification of some of the products.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and D.L. designed the project. R.M., R.S.-B., E.M., V.K.D., A.V., L.A. and J.L. performed the synthetic and mechanistic experiments. R.J.C. performed the docking experiments. All authors analysed and discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Alessandro Ruffoni or Daniele Leonori.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Schemes 1–4 and Tables 1–12.

Supplementary Data 1

Coordinates (xyz) of the computational section.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mykura, R., Sánchez-Bento, R., Matador, E. et al. Synthesis of polysubstituted azepanes by dearomative ring expansion of nitroarenes. Nat. Chem. (2024). https://doi.org/10.1038/s41557-023-01429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41557-023-01429-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing