Skip to main content
Log in

LiCOI1 mediates the biosynthesis of monoterpenes induced by methyl jasmonate in Lilium ‘Siberia’

  • Research Report
  • Published:
Horticulture, Environment, and Biotechnology Aims and scope Submit manuscript

Abstract

As a volatile hormone signal, methyl jasmonate (MeJA) can regulate the biosynthesis of secondary metabolites. But in floral fragrance, the effect and mechanisms of MeJA on monoterpenes, the major components of many plants, are largely unknown. In this paper, we measured the release of monoterpenes from petals of Lilium ‘Siberia’ after MeJA treatment, as well as the expressions of monoterpene pathway genes and Lilium coronatine-insensitive (LiCOI1) gene. Then the LiCOI1 gene was cloned, and using virus-induced gene silencing (VIGS) technology, its function in monoterpene biosynthesis in response to MeJA was validated. The results showed that MeJA significantly improved the release amounts of myrcene, ocimene, and linalool. The expression levels of synthase genes [Lilium myrcene synthase (LiMYS), Lilium ocimene synthase (LiOCS), as well as Lilium linalool synthase (LiLIS)], two pathway genes [Lilium 1-deoxy-D-xylulose 5-phosphate synthase (LiDXS) and Lilium 1-deoxy-D-xylulose-5-phosphate reductoisomerase (LiDXR)] were enhanced. Moreover, the LiCOI1 gene exhibited a remarkably increased expression level, which suggested its signaling role. Based on the analysis, the full length of LiCOI1 gene was 1809 bp, whose deduced protein contained 602 amino acids and was mainly located in the nucleus. Silencing the expression of LiCOI1 in petals significantly depressed not only the gene expressions of LiMYS, LiOCS, LiLIS, LiDXS, and LiDXR, but also the release amounts of myrcene, ocimene, and linalool. These results confirm that LiCOI1 plays an important signaling role in MeJA-induced enhancement of monoterpene biosynthesis in Lilium ‘Siberia’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Balusamy SRD, Rahimi S, Sukweenadhi J, Kim Y, Yang D (2015) Exogenous methyl jasmonate prevents necrosis caused by mechanical wounding and increases terpenoid biosynthesis in Panax ginseng. Plant Cell Tiss Organ Cult 123:341–348

    Article  CAS  Google Scholar 

  • Barman M, Kotamreddy J, Agarwal A, Mitra A (2020) Enhanced emission of linalool from floral scent volatile bouquet in Jasminum auriculatum variants developed via gamma irradiation. Ind Crop Prod 152:112545

    Article  CAS  Google Scholar 

  • Chini A, Fonseca S, Fernandez G, Adie B, Chico JM, Lorenzo O, Garcia-Casado G, Lopez-Vidriero I, Lozano FM, Ponce MR, Micol JL, Solano R (2007) The JAZ family of repressors is the missing link in jasmonate signalling. Nature 448:666–671

    Article  CAS  PubMed  Google Scholar 

  • Chini A, Boter M, Solano R (2009) Plant oxylipins: COI1/JAZs/MYC2 as the core jasmonic acid-signalling module. FEBS J 276:4682–4692

    Article  CAS  PubMed  Google Scholar 

  • Devoto A, Ellis C, Magusin A, Chang HS, Chilcott C, Zhu T, Turner JG (2005) Expression profiling reveals COI1 to be a key regulator of genes involved in wound- and methyl jasmonate-induced secondary metabolism, defence, and hormone interactions. Plant Mol Biol 58(4):497–513

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Wu C, Zhu J, Peng S, Mei W, Dai H (2018) Identification and expression analysis of jasmonic acid receptor gene DcCOI1 in Dracaena cambodiana. Genom Appl Biol 37(10):4423–4430

    Google Scholar 

  • Du F, Wang T, Fan J, Liu Z, Zong J, Fan W, Han Y, Grierson D (2019) Volatile composition and classification of Lilium flower aroma types and identification, polymorphisms, and alternative splicing of their monoterpene synthase genes. Hortic Res 6:110

    Article  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E (2000) Biochemical and molecular genetic aspects of floral scents. Plant Physiol 122:627–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudareva N, Pichersky E, Gershenzon J (2004) Biochemistry of plant volatiles. Plant Physiol 2 135:1893–1902

    Article  Google Scholar 

  • Fenske MP, Takato I (2016) Circadian rhythms in floral scent emission. Front Plant Sci 7:462

    Article  PubMed  PubMed Central  Google Scholar 

  • Fldt J, Arimura GI, Gershenzon J, Takabayashi J, Bohlmann J (2003) Functional identification of AtTPS03 as (E)-beta-ocimene synthase: a monoterpene synthase catalyzing jasmonate- and wound-induced volatile formation in Arabidopsis thaliana. Planta 216(5):745–751

    Article  Google Scholar 

  • Geyter ND, Gholami A, Goormachtig S, Goossens A (2012) Transcriptional machineries in jasmonate-elicited plant secondary metabolism. Trends Plant Sci 17(6):349–359

    Article  PubMed  Google Scholar 

  • Goossens J, Fernández-Calvo P, Schweizer F, Goossens A (2016) Jasmonates: signal transduction components and their roles in environmental stress responses. Plant Mol Biol 91(6):673–689

    Article  CAS  PubMed  Google Scholar 

  • Hao R, Zhang Q, Yang W, Wang J, Cheng T, Pan H, Zhang Q (2014) Emitted and endogenous floral scent compounds of Prunus mume and hybrids. Biochem Syst Ecol 54:23–30

    Article  CAS  Google Scholar 

  • Hendel-Rahmanim K, Masci T, Vainstein A, Weiss D (2007) Diurnal regulation of scent emission in rose flowers. Planta 226:1491–1499

    Article  CAS  PubMed  Google Scholar 

  • Hong G, Xue X, Mao Y, Wang L, Chen X (2012) Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell 24(6):2635–2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Zhang H, Leng P, Zhao J, Wang W, Wang S (2013) The emission of floral scent from Lilium ‘Siberia’ in response to light intensity and temperature. Acta Physiol Plant 35:1694–1700

    Article  Google Scholar 

  • Hu Z, Li T, Zheng J, Leng P, Yang K, Zhang K (2016) A new monoterpene synthase gene involved in the monoterpene production from Lilium ‘Siberia’. J Anim Plant Sci 26:1389–1398

    CAS  Google Scholar 

  • Hu Z, Tang B, Wu Q, Zheng J, Leng P, Zhang K (2017) Transcriptome sequencing analysis reveals a difference in monoterpene biosynthesis between scented Lilium ‘Siberia’ and unscented Lilium ‘Novano’. Front Plant Sci 8:1351

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012) The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193:997–1008

    Article  CAS  PubMed  Google Scholar 

  • Jo H, Rodiek S, Fujii E, Miyazaki Y, Park BJ, Ann SW (2013) Physiological and psychological response to floral scent. HortScience 48:82–88

    Article  Google Scholar 

  • Ke AF, Ke Y, Yu Y, Wang X, Fan Y (2021) Genome-wide analysis reveals the potential role of MYB transcription factors in floral scent formation in Hedychium coronarium. Front Plant Sci 2021:623742

    Google Scholar 

  • Lee S, Badieyan S, Bevan DR, Herde M, Gatz C, Tholl D (2010) Herbivore-induced and floral homoterpene volatiles are biosynthesized by a single P450 enzyme (CYP82G1) in Arabidopsis. Natl Acad Sci USA 107(49):21205–21210

    Article  CAS  Google Scholar 

  • Li W, Li W, Yang S, Ma Z, Qi Zhou, Mao J, Han S, Chen B (2020) Transcriptome and metabolite conjoint analysis reveals that exogenous methyl jasmonate regulates monoterpene synthesis in grape berry skin. J Agri Food Chem 68(18):5270–5281

    Article  CAS  Google Scholar 

  • Lundborg L, Nordlander G, BjöRklund N, Nordenhem H, Borg-Karlson AK (2016) Methyl jasmonate-induced monoterpenes in scots pine and Norway spruce tissues affect pine weevil orientation. J Chem Ecol 42(12):1237–1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin DM, Gershenzon J, Bohlmann J (2003) Induction of volatile terpene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce. Plant Physiol 132(3):1586–1599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi X, Fang H, Xu D, Liang C, Li W (2018) Transcriptome analysis of JA signal transduction, transcription factors, and monoterpene biosynthesis pathway in response to methyl jasmonate elicitation in Mentha canadensis L. Int J Mol Sci 19(8):2364

    Article  PubMed  PubMed Central  Google Scholar 

  • Raguso RA (2008) Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst 39:549–569

    Article  Google Scholar 

  • Rahnamaie-Tajadod R, Goh HH, Noor NM (2019) Methyl jasmonate-induced compositional changes of volatile organic compounds in Polygonum minus leaves. J Plant Physiol 240:152994

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Saona C, Crafts-Brandner SJ, Paré PW, Henneberry TJ (2001) Exogenous methyl jasmonate induces volatile emissions in cotton plants. J Chem Ecol 27(4):679–695

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Chen G, Ye N, Lv S, Liu Z, Huang W, Lin Z (2014) Cloning and expression analysis of deoxyoxylulose-5-phosphate synthase gene related to aroma from Jasminum sambac and isolation of its promoter. Acta Hortic Sin 41(6):1236–1244

    CAS  Google Scholar 

  • Tholl D (2015) Biosynthesis and biological functions of terpenoids in plants. Adv Biochem Eng Biotechnol 148:63–106

    CAS  PubMed  Google Scholar 

  • Wang W, Li F, Zhang W, Wang Y, Song A, Jiang J, Chen F, Chen S (2020) Cloning and expression characteristics of CmTPS1like gene in Chrysanthemum morifolium. J Nanjing Agri Univ 43(1):58–64

    CAS  Google Scholar 

  • Xie D, Feys BF, James S, Nieto-Rostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science 280(5366):1091–1094

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21(8):2220–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhao J, Zheng J, Leng P, Li X, Hu Z, Liu J, Meng X (2016) Analysis of floral scent emitted from Syringa plants. J Forestry Res 27:273–281

    Article  CAS  Google Scholar 

  • Yang Z, Li Y, Gao F, Jin W, Li S, Kimani S, Yang S, Bao T, Gao X, Wang L (2020) MYB21 interacts with MYC2 to control the expression of terpene synthase genes in flowers of Freesia Hybrida and Arabidopsis thaliana. J Exp Bot 71(14):4140–4158

    Article  CAS  PubMed  Google Scholar 

  • Yu Z, Zhao C, Zhang G, da Silva JAT, Duan J (2020) Genome-wide identification and expression profile of TPS gene family in Dendrobium officinale and the role of DoTPS10 in linalool biosynthesis. Int J Mol Sci 21(15):5419

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Leng P, Hu Z, Zhao J, Wang W, Xu F (2013a) The floral scent emitted from Lilium ‘Siberia’ at different flowering stages and diurnal variation. Acta Hortic Sin 40(4):693–702

    CAS  Google Scholar 

  • Zhang H, Hu Z, Leng P, Wang W, Xu F, Zhao J (2013b) Qualitative and quantitative analysis of floral volatile components from different varieties of Lilium spp. Sci Agri Sin 46(4):790–799

    CAS  Google Scholar 

  • Zhang T, Guo Y, Shi X, Yang Y, Sun M (2020) Overexpression of LiTPS2 from a cultivar of lily (Lilium ‘Siberia’) enhances the monoterpenoids content in tobacco flowers. Plant Physiol Biochem 151(1):391–399

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Jiang Y, Chen S, Chen F, Chen F (2021) Concentration-dependent emission of floral scent terpenoids from diverse cultivars of Chrysanthemum morifolium and their wild relatives. Plant Sci 309:110959

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The work was supported by National Natural Science Foundation of China (No. 32372747) and the Beijing Municipal Education Commission for Their Financial Support through Innovative Transdisciplinary Program of Ecological Restoration Engineering.

Author information

Authors and Affiliations

Authors

Contributions

PL and ZH conceived and designed the research project. ZL and YL performed the experiment. YF analyzed the data. ZL wrote this paper, and JW revised this paper. All authors read and approved the manuscript.

Corresponding authors

Correspondence to Ping-Sheng Leng or Zeng-Hui Hu.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leng, Z., Li, YY., Fu, YC. et al. LiCOI1 mediates the biosynthesis of monoterpenes induced by methyl jasmonate in Lilium ‘Siberia’. Hortic. Environ. Biotechnol. 65, 303–312 (2024). https://doi.org/10.1007/s13580-023-00569-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13580-023-00569-0

Keywords

Navigation