Skip to main content
Log in

The identification of c-Abl inhibitors as potential agents for Parkinson’s disease: a preliminary in silico approach

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) is the most common movement disorder worldwide. PD is primarily associated with the mutation, overexpression, and phosphorylation of α-synuclein. At the molecular level, the upstream protein c-Abl, a tyrosine kinase, has been shown to regulate α-synuclein activation and expression patterns. This study aimed to identify potential c-Abl inhibitors through in silico approaches. Molecular docking was performed using PyRx software, followed by Prime MM-GBSA studies. BBB permeability and toxicity were predicted using CBligand and ProTox-II, respectively. ADME was assessed using QikProp. Molecular dynamics were carried out using Desmond (Academic version). DFT calculations were performed using the Gaussian 16 suite program. The binding scores of the top hits, norimatinib, DB07326, and entinostat were − 11.8 kcal/mol, − 11.8 kcal/mol, and − 10.8 kcal/mol, respectively. These hits displayed drug-likeness with acceptable ADME properties, except for the standard, nilotinib, which violated Lipinski’s rule of five. Similarly, the molecular dynamics showed that the top hits remained stable during the 100 ns simulation. DFT results indicate DB04739 as a potent reactive hit. While based on toxicity prediction, entinostat may be a potential candidate for preclinical and clinical testing in PD. Further studies are warranted to confirm the activity and efficacy of these ligands for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Poewe W, Seppi K, Tanner CM et al (2017) Parkinson disease. Nat Rev Dis Prim 3:1–21. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  2. Pang SYY, Ho PWL, Liu HF et al (2019) The interplay of aging, genetics and environmental factors in the pathogenesis of Parkinson’s disease. Transl Neurodegener 8:1–11

    Article  CAS  Google Scholar 

  3. Dye RV, Miller KJ, Singer EJ, Levine AJ (2012) Hormone replacement therapy and risk for neurodegenerative diseases. Int J Alzheimers Dis. https://doi.org/10.1155/2012/258454

    Article  PubMed  PubMed Central  Google Scholar 

  4. Pinto JM, Castillo RL, Sotomayor-Zárate R (2018) Sex hormones: role in neurodegenerative diseases and addiction. In: Sex hormones in neurodegenerative processes and diseases. 207–224. https://doi.org/10.5772/intechopen.71380

  5. Villa A, Vegeto E, Poletti A, Maggi A (2016) Estrogens, neuroinflammation, and neurodegeneration. Endocr Rev 37:372–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee YH, Cha J, Chung SJ et al (2019) Beneficial effect of estrogen on nigrostriatal dopaminergic neurons in drug-naïve postmenopausal Parkinson’s disease. Sci Rep 9:10531–10539. https://doi.org/10.1038/s41598-019-47026-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Masato A, Plotegher N, Boassa D, Bubacco L (2019) Impaired dopamine metabolism in Parkinson’s disease pathogenesis. Mol Neurodegener 14:35

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341. https://doi.org/10.1001/archneur.60.3.337

    Article  PubMed  Google Scholar 

  9. Morale MC, Serra PA, L’Episcopo F et al (2006) Estrogen, neuroinflammation and neuroprotection in Parkinson’s disease: glia dictates resistance versus vulnerability to neurodegeneration. Neuroscience 138:869–878. https://doi.org/10.1016/j.neuroscience.2005.07.060

    Article  CAS  PubMed  Google Scholar 

  10. Del Rey NLG, Quiroga-Varela A, Garbayo E et al (2018) Advances in Parkinson’s disease: 200 years later. Front Neuroanat 12:1–14. https://doi.org/10.3389/fnana.2018.00113

    Article  CAS  Google Scholar 

  11. Kalia LV, Lang AE (2015) Parkinson’s disease. The Lancet 386:896–912

    Article  CAS  Google Scholar 

  12. Dong XX, Wang Y, Qin ZH (2009) Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol Sin 30:379–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iovino L, Tremblay ME, Civiero L (2020) Glutamate-induced excitotoxicity in Parkinson’s disease: the role of glial cells. J Pharmacol Sci 144:151–164

    Article  CAS  PubMed  Google Scholar 

  14. Venda LL, Cragg SJ, Buchman VL, Wade-Martins R (2010) α-Synuclein and dopamine at the crossroads of Parkinson’s disease. Trends Neurosci 33:559–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lohr KM, Masoud ST, Salahpour A, Miller GW (2017) Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci 45:20–33. https://doi.org/10.1111/ejn.13357

    Article  PubMed  Google Scholar 

  16. Somayaji M, Lanseur Z, Choi SJ et al (2021) Roles for α-synuclein in gene expression. Genes (Basel) 12:1166. https://doi.org/10.3390/genes12081166

    Article  CAS  PubMed  Google Scholar 

  17. Fujioka S, Ogaki K, Tacik PM et al (2014) Update on novel familial forms of Parkinson’s disease and multiple system atrophy. Parkinsonism Relat Disord. https://doi.org/10.1016/S1353-8020(13)70010-5

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rutherford NJ, Giasson BI (2015) The A53E α-synuclein pathological mutation demonstrates reduced aggregation propensity in vitro and in cell culture. Neurosci Lett 597:43–48. https://doi.org/10.1016/j.neulet.2015.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Meade RM, Fairlie DP, Mason JM (2019) Alpha-synuclein structure and Parkinson’s disease—lessons and emerging principles. Mol Neurodegener 14:29

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brahmachari S, Ge P, Lee SH et al (2016) Activation of tyrosine kinase c-Abl contributes to α-synuclein-induced neurodegeneration. J Clin Investig 126:2970–2988. https://doi.org/10.1172/JCI85456

    Article  PubMed  PubMed Central  Google Scholar 

  21. Anderson JP, Walker DE, Goldstein JM et al (2006) Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752. https://doi.org/10.1074/jbc.M600933200

    Article  CAS  PubMed  Google Scholar 

  22. Na CH, Sathe G, Rosenthal LS et al (2020) Development of a novel method for the quantification of tyrosine 39 phosphorylated α- and β-synuclein in human cerebrospinal fluid. Clin Proteomics 17:1–9. https://doi.org/10.1186/s12014-020-09277-8

    Article  CAS  Google Scholar 

  23. Madsen DA, Schmidt SI, Blaabjerg M, Meyer M (2021) Interaction between parkin and α-synuclein in park2-mediated Parkinson’s disease. Cells 10:1–30

    Article  Google Scholar 

  24. Chung E, Choi Y, Park J et al (2020) Intracellular delivery of Parkin rescues neurons from accumulation of damaged mitochondria and pathological α-synuclein. Sci Adv 6:1–15. https://doi.org/10.1126/sciadv.aba1193

    Article  CAS  Google Scholar 

  25. Yasuda T, Hayakawa H, Nihira T et al (2011) Parkin-mediated protection of dopaminergic neurons in a chronic MPTP-minipump mouse model of Parkinson disease. J Neuropathol Exp Neurol 70:686–697. https://doi.org/10.1097/NEN.0b013e3182269ecd

    Article  PubMed  Google Scholar 

  26. Hantschel O, Superti-Furga G (2004) Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat Rev Mol Cell Biol 5:33–44

    Article  CAS  PubMed  Google Scholar 

  27. Walsh RR, Damle NK, Mandhane S et al (2023) Plasma and cerebrospinal fluid pharmacokinetics of vodobatinib, a neuroprotective c-Abl tyrosine kinase inhibitor for the treatment of Parkinson’s disease. Parkinsonism Relat Disord 108:105281. https://doi.org/10.1016/j.parkreldis.2023.105281

    Article  CAS  PubMed  Google Scholar 

  28. Turner RS, Hebron M, Lawler A et al (2020) Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease: a phase 2, double-blind, randomized, placebo-controlled trial. Alzheimers Dement 16:309–317. https://doi.org/10.1002/alz.044628

    Article  Google Scholar 

  29. Pagan FL, Hebron ML, Wilmarth B et al (2020) Nilotinib effects on safety, tolerability, and potential biomarkers in Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol 77:309–317. https://doi.org/10.1001/jamaneurol.2019.4200

    Article  PubMed  Google Scholar 

  30. Turner RS, Hebron ML, Lawler A et al (2020) Nilotinib effects on safety, tolerability, and biomarkers in Alzheimer’s disease. Ann Neurol 88:183–194. https://doi.org/10.1002/ana.25775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahul-Mellier AL, Fauvet B, Gysbers A et al (2014) C-Abl phosphorylates α-synuclein and regulates its degradation: implication for α-synuclein clearance and contribution to the pathogenesis of Parkinson’s disease. Hum Mol Genet 23:2858–2879. https://doi.org/10.1093/hmg/ddt674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Werner MH, Olanow CW (2022) Parkinson’s disease modification through Abl kinase inhibition: an opportunity. Mov Disord 37:6–15

    Article  CAS  PubMed  Google Scholar 

  33. Brahmachari S, Karuppagounder SS, Ge P et al (2017) C-Abl and Parkinson’s disease: mechanisms and therapeutic potential. J Parkinsons Dis 7:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Imam SZ, Trickler W, Kimura S et al (2013) Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson’s disease model. PLoS ONE 8:e65129. https://doi.org/10.1371/journal.pone.0065129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hebron ML, Lonskaya I, Moussa CEH (2013) Nilotinib reverses loss of dopamine neurons and improves motor behavior via autophagic degradation of α-synuclein in Parkinson’s disease models. Hum Mol Genet 22:3315–3328. https://doi.org/10.1093/hmg/ddt192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Pagan FL, Hebron ML, Wilmarth B et al (2019) Pharmacokinetics and pharmacodynamics of a single dose Nilotinib in individuals with Parkinson’s disease. Pharmacol Res Perspect 7:1–12. https://doi.org/10.1002/prp2.470

    Article  CAS  Google Scholar 

  37. Lopez-Cuina M, Guerin PA, Canron MH et al (2020) Nilotinib fails to prevent synucleinopathy and cell loss in a mouse model of multiple system atrophy. Mov Disord 35:1163–1172. https://doi.org/10.1002/mds.28034

    Article  CAS  PubMed  Google Scholar 

  38. Ahamad S, Hema K, Gupta D (2023) Identification of novel tau-tubulin kinase 2 inhibitors using computational approaches. ACS Omega 8:13026–13037. https://doi.org/10.1021/acsomega.3c00225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ahamad S, Kanipakam H, Kumar V, Gupta D (2021) A molecular journey to check the conformational dynamics of tau tubulin kinase 2 mutations associated with Alzheimer’s disease. RSC Adv 11:1320–1331. https://doi.org/10.1039/d0ra07659g

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ahamad S, Hema K, Kumar V, Gupta D (2021) The structural, functional, and dynamic effect of tau tubulin kinase1 upon a mutation: a neuro-degenerative hotspot. J Cell Biochem 122:1653–1664. https://doi.org/10.1002/jcb.30112

    Article  CAS  PubMed  Google Scholar 

  41. Oleg T, Arthur JO (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461

    Article  Google Scholar 

  42. Selvaraj D, Muthu S, Kotha S et al (2021) Syringaresinol as a novel androgen receptor antagonist against wild and mutant androgen receptors for the treatment of castration-resistant prostate cancer: molecular docking, in-vitro and molecular dynamics study. J Biomol Struct Dyn 39:621–634. https://doi.org/10.1080/07391102.2020.1715261

    Article  CAS  PubMed  Google Scholar 

  43. Liu H, Wang L, Lv M et al (2014) AlzPlatform: an Alzheimer’s disease domain-specific chemogenomics knowledgebase for polypharmacology and target identification research. J Chem Inf Model 54:1050–1060. https://doi.org/10.1021/ci500004h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chinnasamy S, Nagamani S, Muthusamy K (2015) Zn2+ ion of the snake venom metalloproteinase (SVMP) plays a critical role in ligand binding: a molecular dynamics simulation study. RSC Adv 5:70566–70576. https://doi.org/10.1039/c5ra14693c

    Article  CAS  Google Scholar 

  45. Nagamani S, Muthusamy K, Marshal JJ (2016) E-pharmacophore filtering and molecular dynamics simulation studies in the discovery of potent drug-like molecules for chronic kidney disease. J Biomol Struct Dyn 34:2233–2250. https://doi.org/10.1080/07391102.2015.1111168

    Article  CAS  PubMed  Google Scholar 

  46. Banerjee P, Eckert AO, Schrey AK, Preissner R (2018) ProTox-II: a webserver for the prediction of toxicity of chemicals. Nucleic Acids Res 46:W257–W263. https://doi.org/10.1093/nar/gky318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Al Otaibi AA, Alshammari SL, Dhahi Alsukaibi AK et al (2023) Synthesis, anticancer activity, molecular docking and molecular dynamics studies of some pyrazole–chalcone hybrids. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2023.2199867

    Article  PubMed  Google Scholar 

  48. Alshammari MM, Soury R, Alenezi KM et al (2022) Synthesis, characterization, anticancer and in silico studies of a pyrazole-tethered thiazolidine-2,4-dione derivative. J Biomol Struct Dyn 40:13075–13082. https://doi.org/10.1080/07391102.2021.1981451

    Article  CAS  PubMed  Google Scholar 

  49. Agwupuye JA, Louis H, Gber TE et al (2022) Molecular modeling and DFT studies of diazenylphenyl derivatives as a potential HBV and HCV antiviral agents. Chem Phys Impact 5:1–13. https://doi.org/10.1016/j.chphi.2022.100122

    Article  Google Scholar 

  50. Kirubakaran P, Karthikeyan M (2013) Pharmacophore modeling, 3D-QSAR and DFT studies of IWR small-molecule inhibitors of Wnt response. J Recept Signal Transduct 33:276–285. https://doi.org/10.3109/10799893.2013.822888

    Article  CAS  Google Scholar 

  51. (1979) Frontier orbitals and organic chemical reactions. J Mol Struct 56:306. https://doi.org/10.1016/0022-2860(79)80172-6

  52. Zhang J, Li X, Da LJ (2019) The roles of post-translational modifications on α-synuclein in the pathogenesis of Parkinson’s diseases. Front Neurosci 13:381

    Article  PubMed  PubMed Central  Google Scholar 

  53. Duffy MF, Collier TJ, Patterson JR et al (2018) Lewy body-like alpha-synuclein inclusions trigger reactive microgliosis prior to nigral degeneration. J Neuroinflamm. https://doi.org/10.1186/s12974-018-1171-z

    Article  Google Scholar 

  54. Zella SMA, Metzdorf J, Ciftci E et al (2019) Emerging immunotherapies for Parkinson disease. Neurol Ther 8:29–44

    Article  PubMed  Google Scholar 

  55. Plattner R, Kadlec L, Demali KA et al (1999) c-Abl is activated by growth factors and Src family kinases and has a role in the cellular response to PDGF. Genes Dev 13:2400–2411. https://doi.org/10.1101/gad.13.18.2400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Weisberg E, Manley PW, Breitenstein W et al (2005) Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7:129–141. https://doi.org/10.1016/j.ccr.2005.01.007

    Article  CAS  PubMed  Google Scholar 

  57. Iacuzzi V, Posocco B, Zanchetta M et al (2019) Development and validation of LC-MS/MS method for imatinib and norimatinib monitoring by finger-prick DBS in gastrointestinal stromal tumor patients. PLoS ONE 14:1–18. https://doi.org/10.1371/journal.pone.0225225

    Article  CAS  Google Scholar 

  58. Mlejnek P, Dolezel P, Faber E, Kosztyu P (2011) Interactions of N-desmethyl imatinib, an active metabolite of imatinib, with P-glycoprotein in human leukemia cells. Ann Hematol 90:837–842. https://doi.org/10.1007/s00277-010-1142-7

    Article  CAS  PubMed  Google Scholar 

  59. Kunz RK, Rumfelt S, Chen N et al (2008) Discovery of amido-benzisoxazoles as potent c-Kit inhibitors. Bioorg Med Chem Lett 18:5115–5117. https://doi.org/10.1016/j.bmcl.2008.07.111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Department of Science and Technology—Fund for Improvement of Science and Technology Infrastructure in Universities and Higher Educational Institutions (DST-FIST), New Delhi for their infrastructure support to our department. The author would also like to express a special thanks to the management of JSS College of Pharmacy, Ooty and JSS Academy of Higher Education & Research, Mysuru.

Funding

The study did not receive any funding for carrying out the work.

Author information

Authors and Affiliations

Authors

Contributions

ER performed the literature review, designed the concept, performed the study, and interpretation of results. DR performed the study, interpretation of results, and edited the manuscript. SJ and VS performed and interpreted the DFT studies. All the authors approved the final manuscript for submission and publication.

Corresponding author

Correspondence to Emdormi Rymbai.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 696 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rymbai, E., Roy, D., Jupudi, S. et al. The identification of c-Abl inhibitors as potential agents for Parkinson’s disease: a preliminary in silico approach. Mol Divers (2024). https://doi.org/10.1007/s11030-023-10796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11030-023-10796-3

Keywords

Navigation